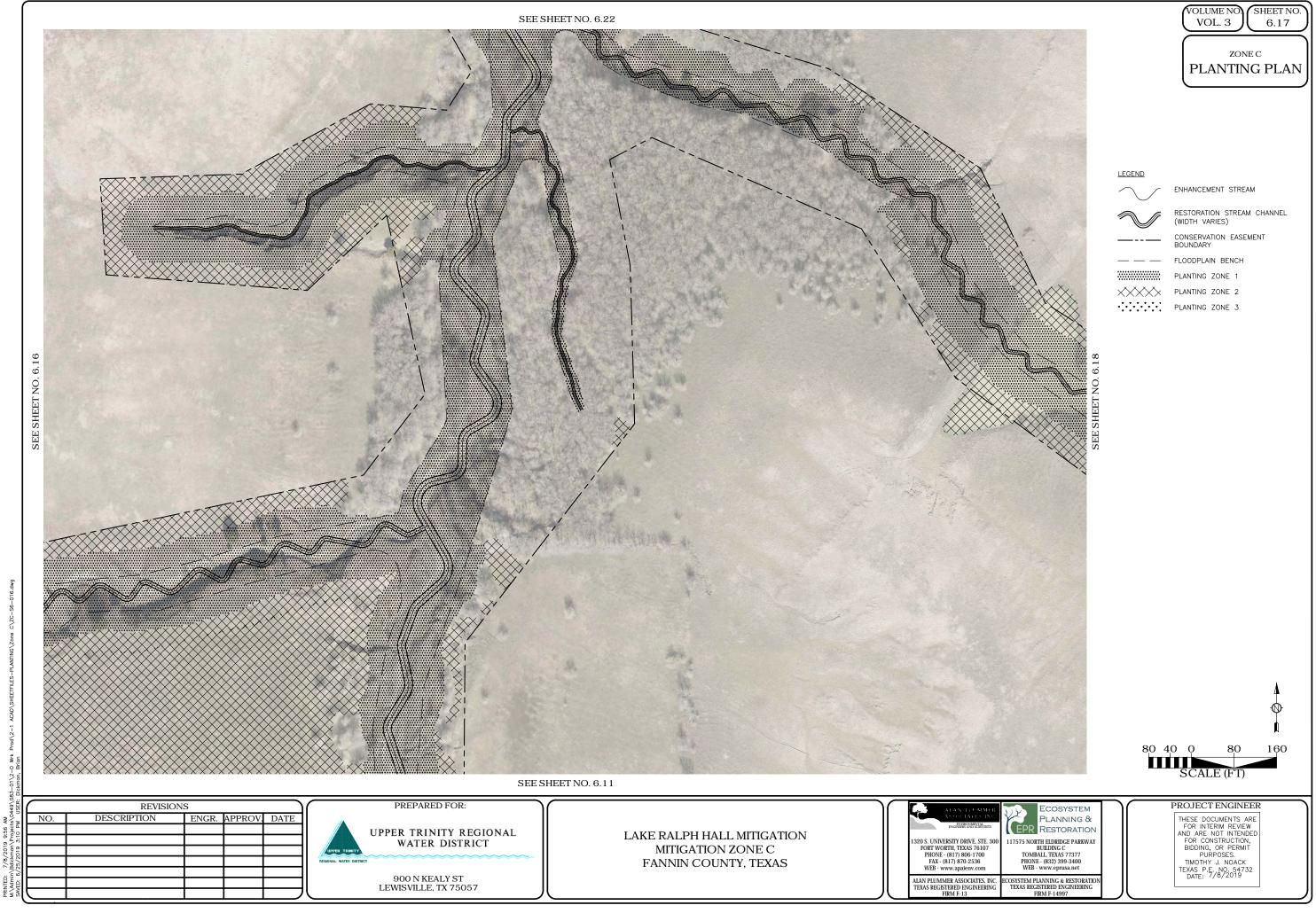
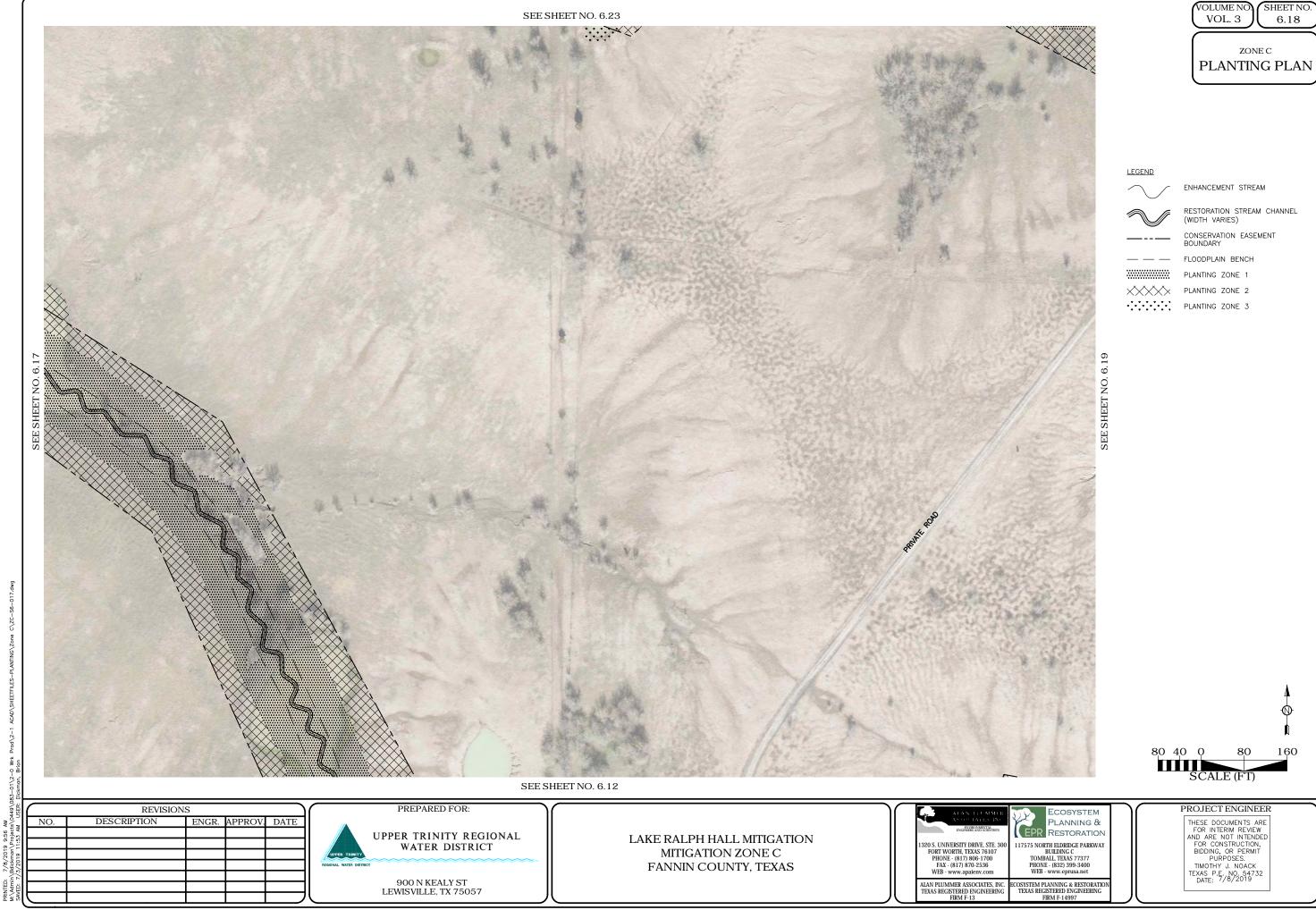
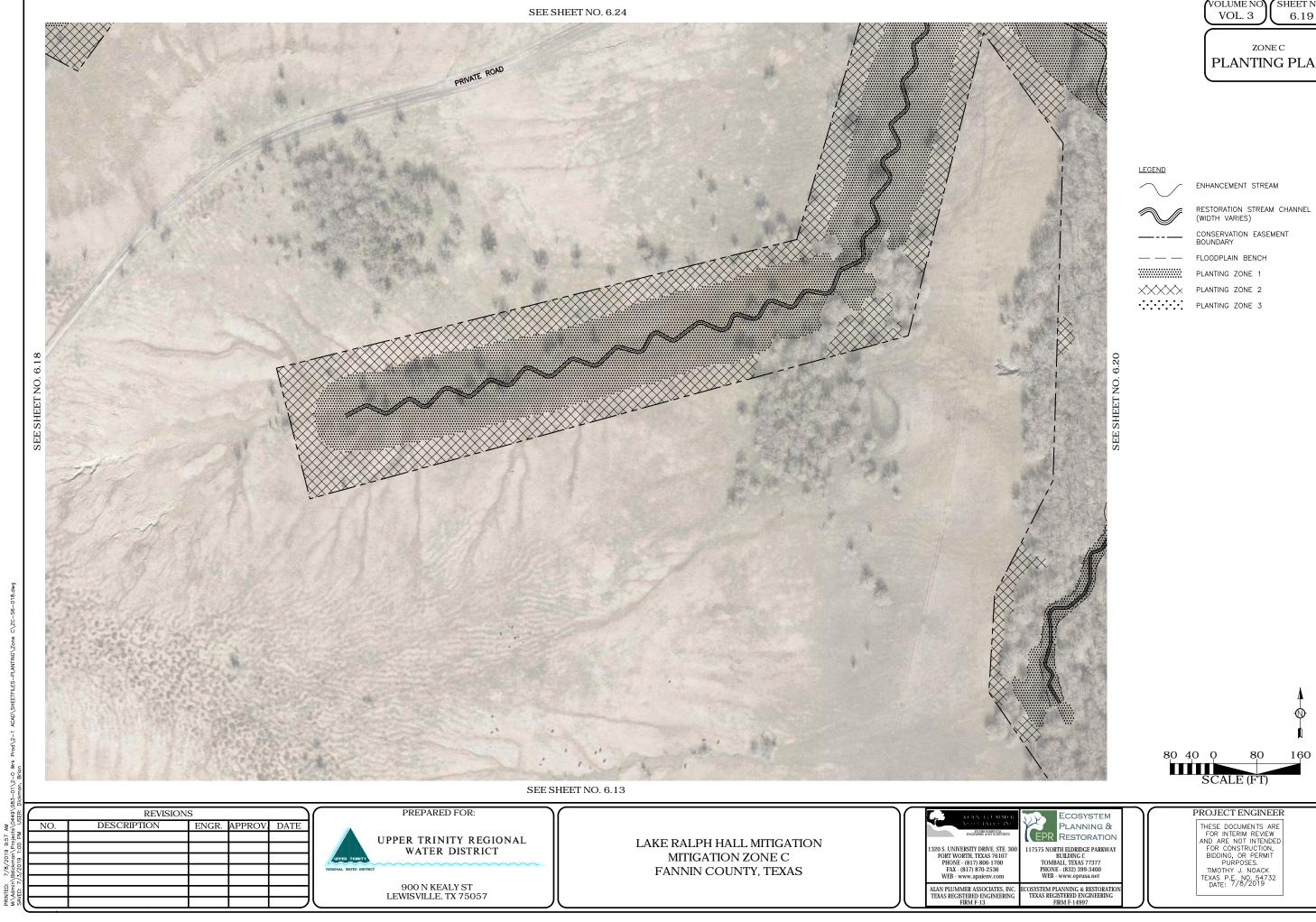
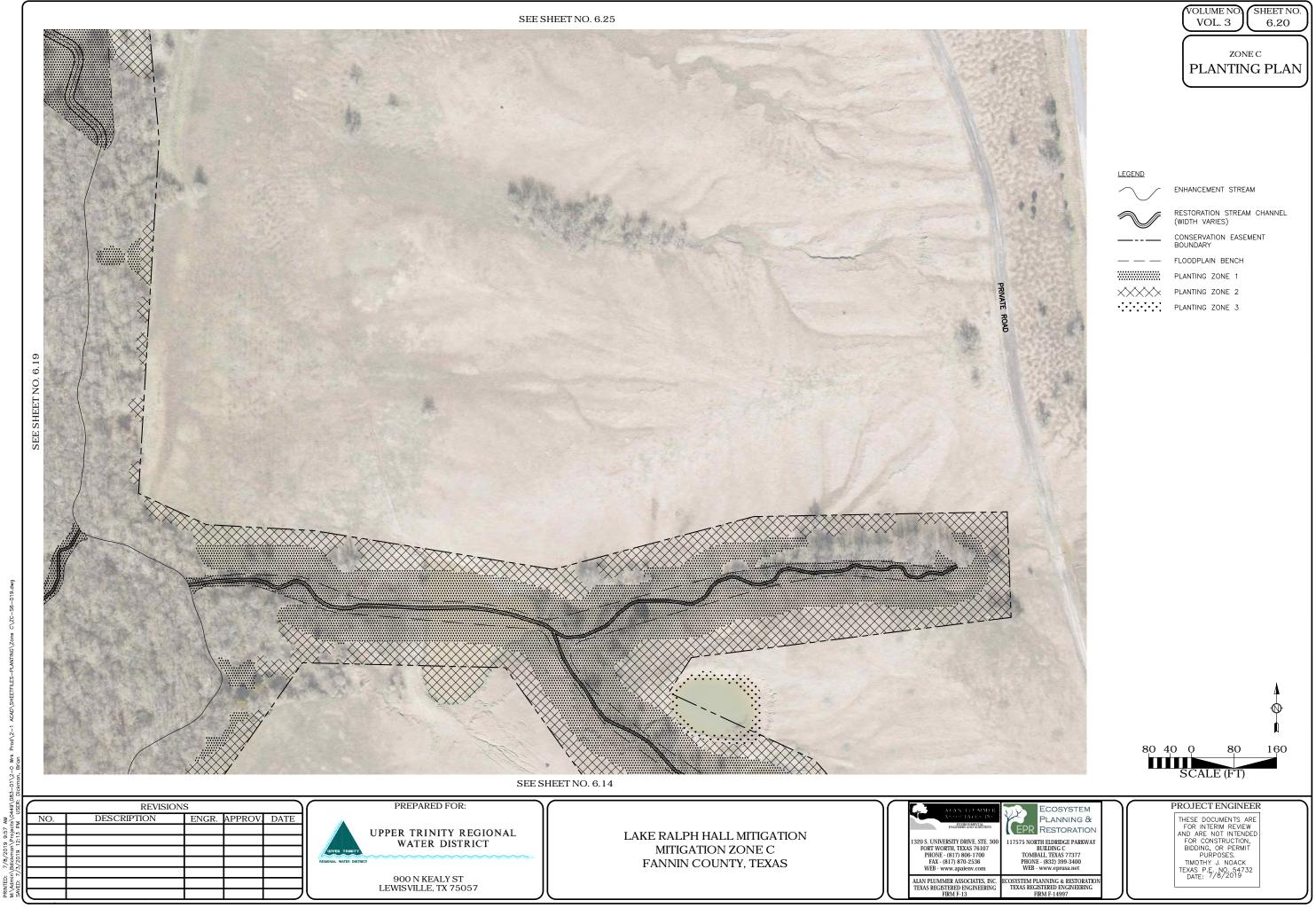
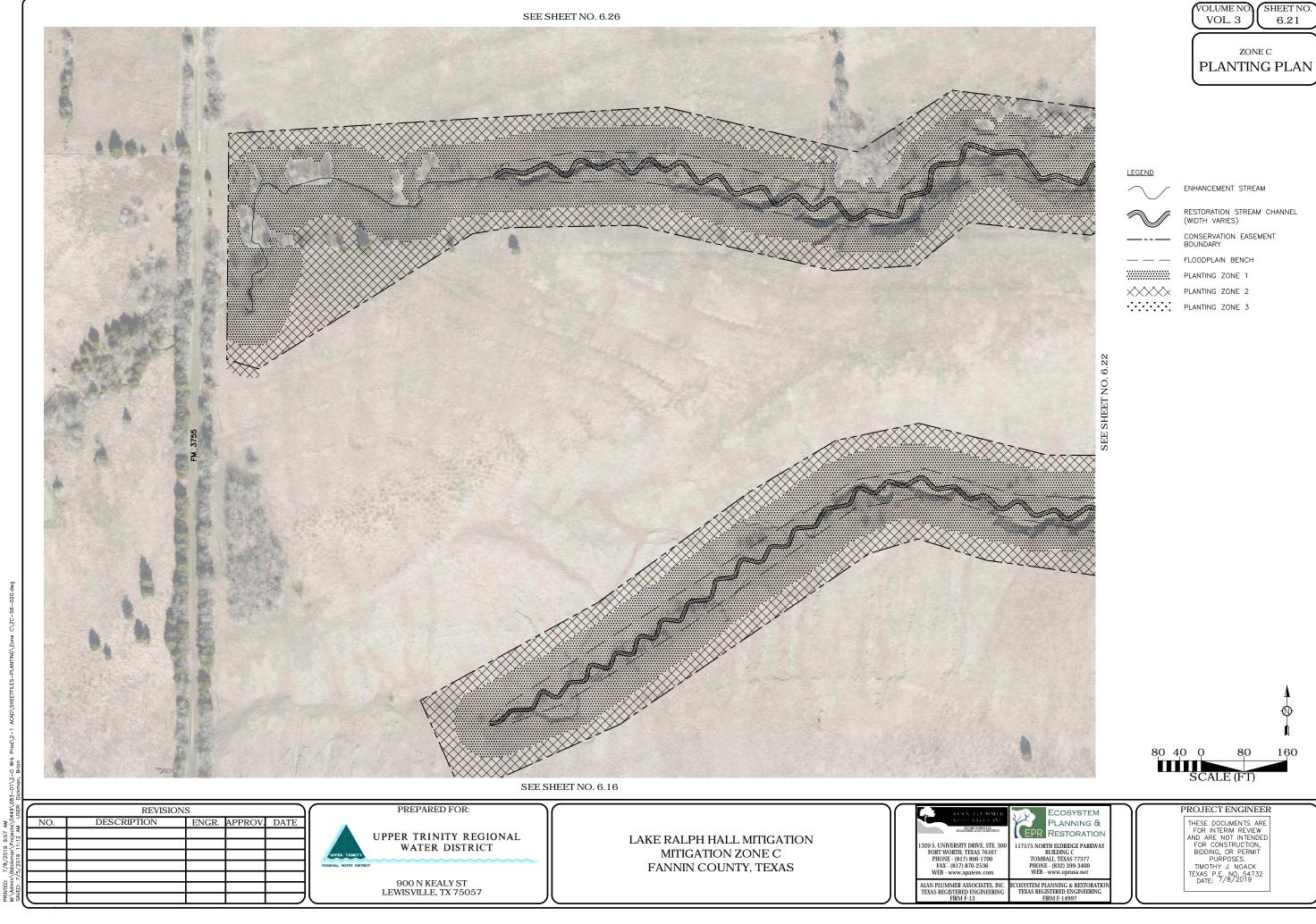

	VOLUME NO. VOL. 3 SHEET NO. 6.14
	ZONE C PLANTING PLAN
/	ENHANCEMENT STREAM
ſſ	RESTORATION STREAM CHANNEL (WIDTH VARIES)
	CONSERVATION EASEMENT BOUNDARY
	FLOODPLAIN BENCH
	PLANTING ZONE 1
$\times\!$	PLANTING ZONE 2
·:·:	PLANTING ZONE 3

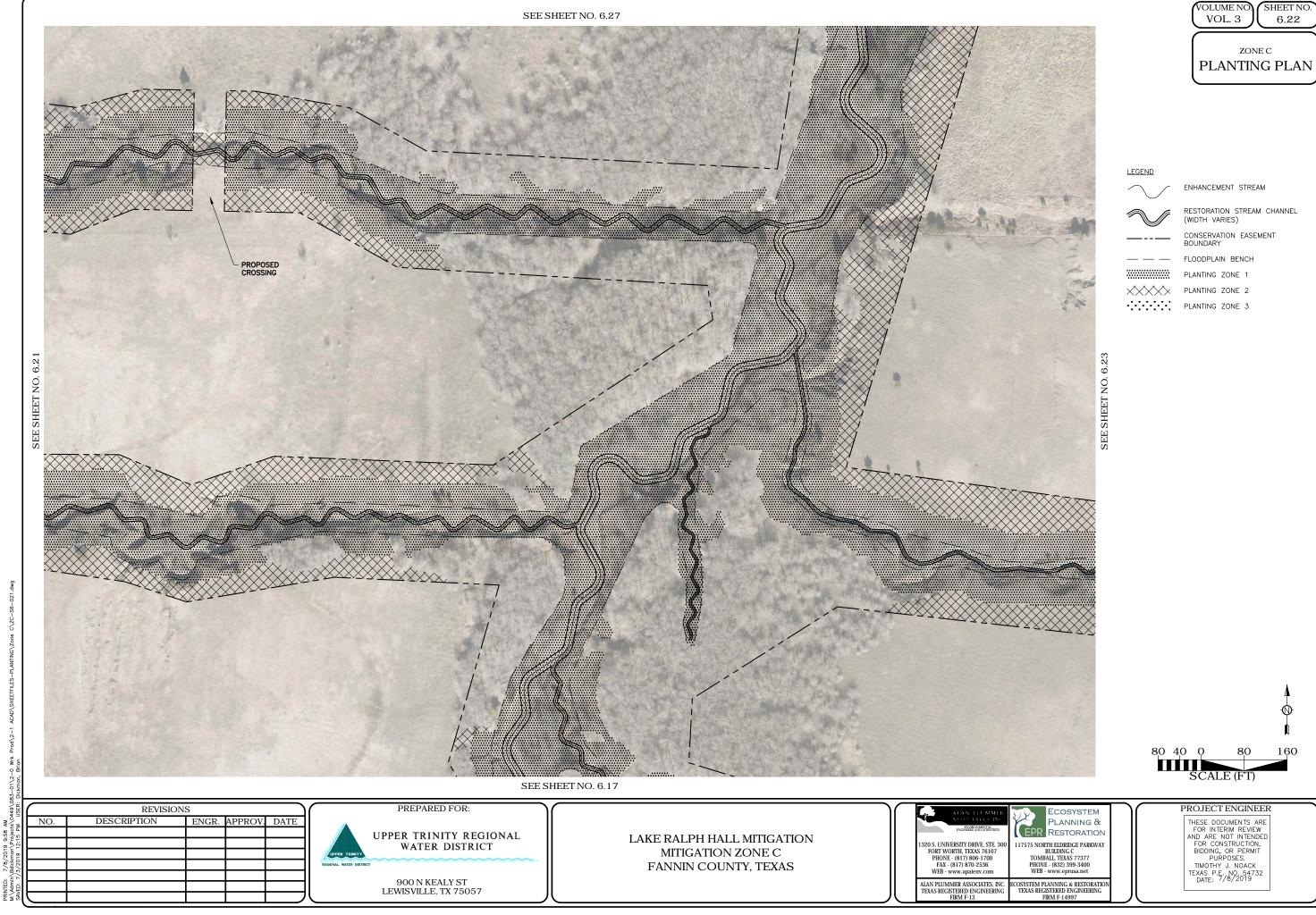

 \odot





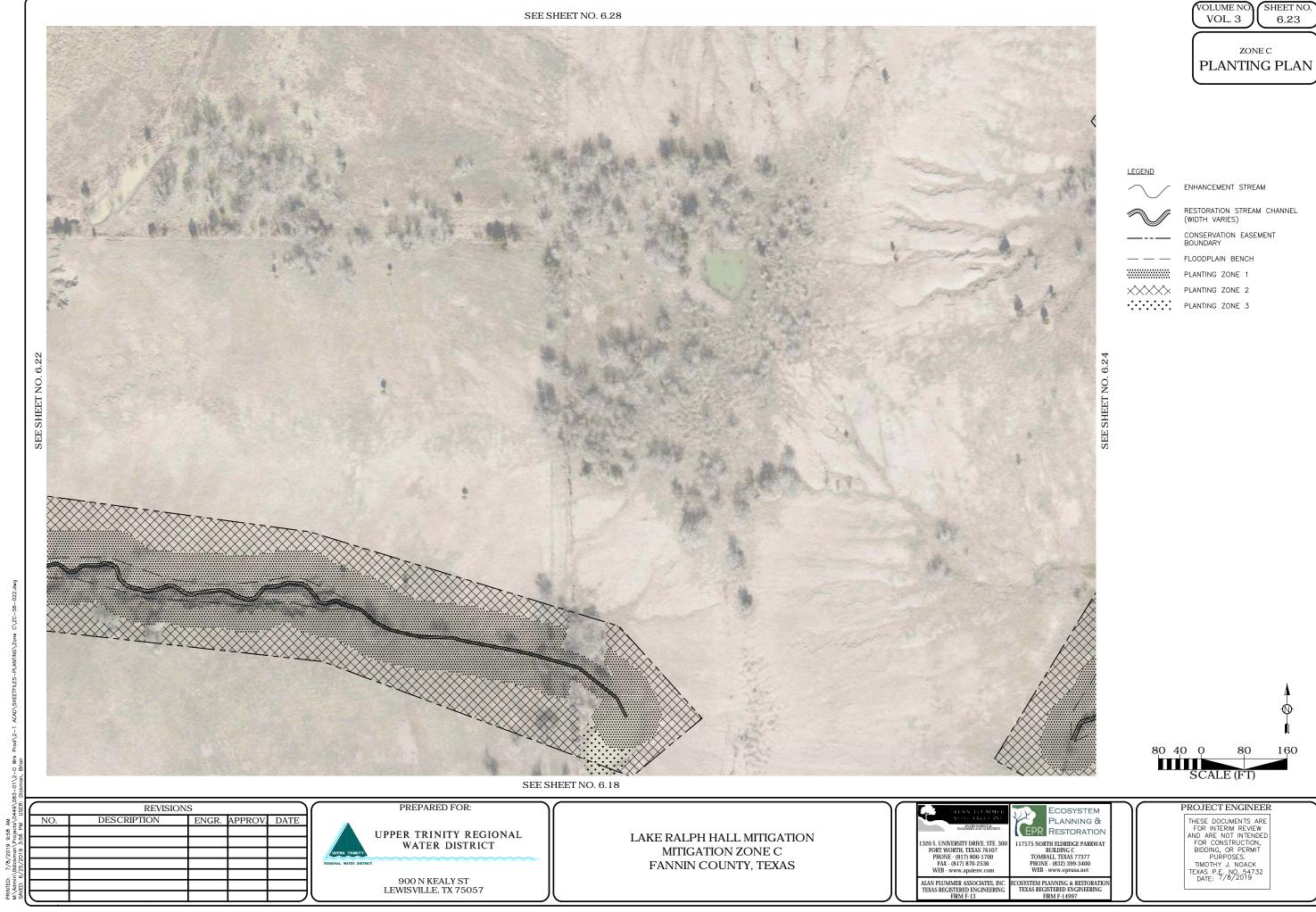

6.18

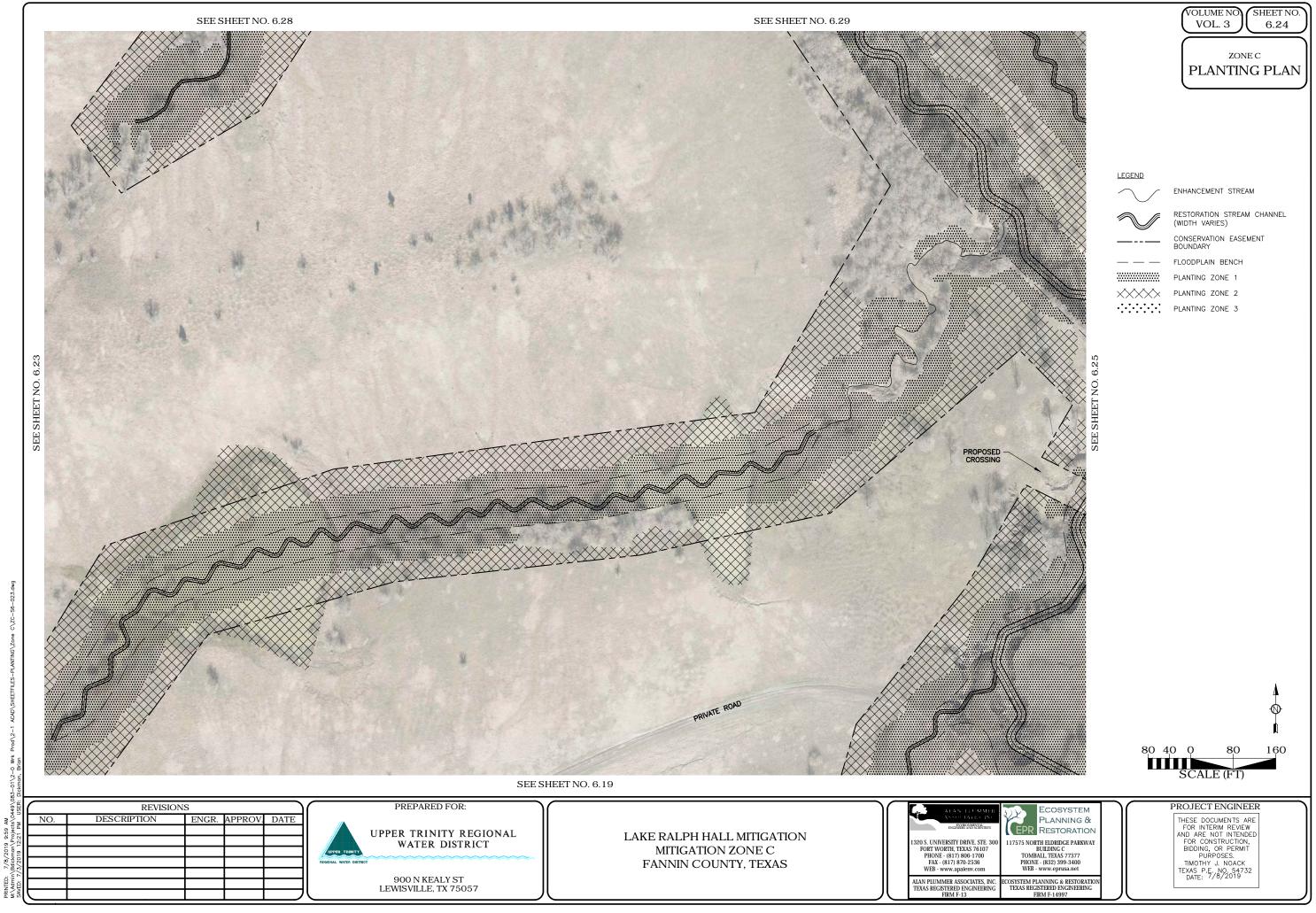

 \odot

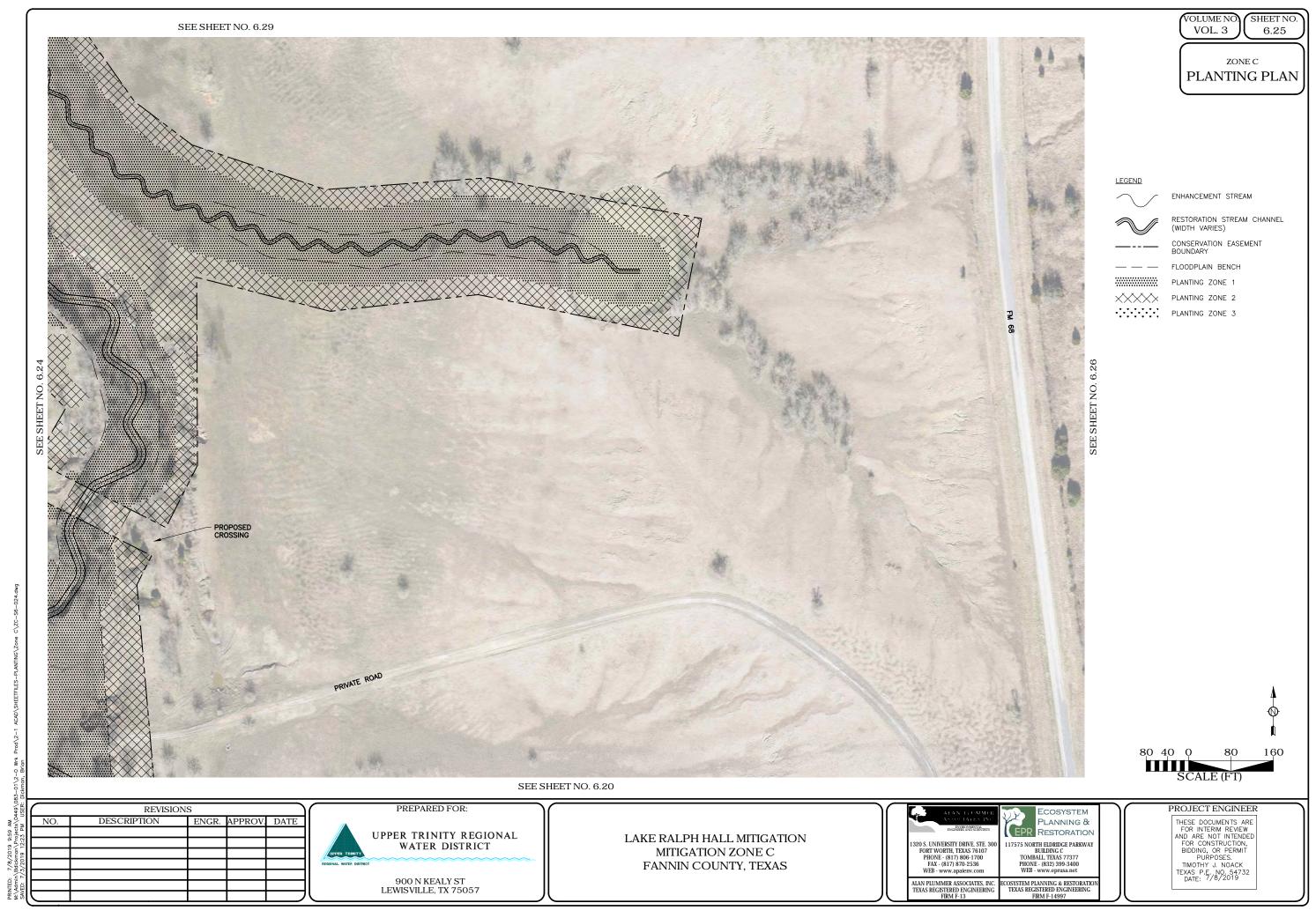


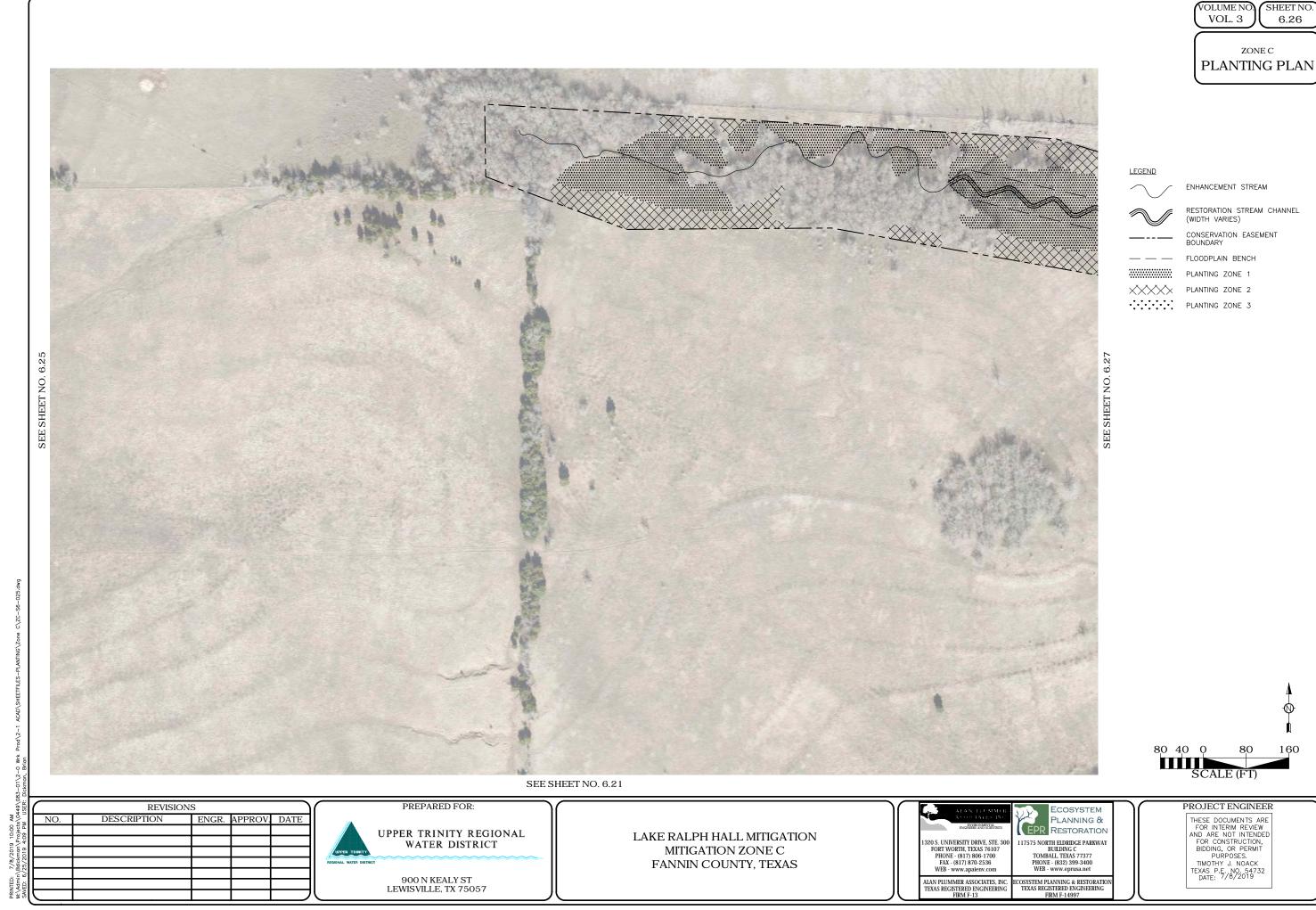
	VOLUME NO, SHEET NO.
	VOL. 3 6.19
	ZONE C PLANTING PLAN
D	
\int	ENHANCEMENT STREAM
ſ	RESTORATION STREAM CHANNEL (WIDTH VARIES)
	CONSERVATION EASEMENT BOUNDARY
	FLOODPLAIN BENCH
	PLANTING ZONE 1
$\sim \sim \sim$	PLANTING ZONE 2
····:	PLANTING ZONE 3

N ELUMMER	ECOSYSTEM	PROJECT ENGINEER
1 A LEN INC. NVIRONMENTAL EBES AND SCIENTISTS	EPR PLANNING & RESTORATION	THESE DOCUMENTS ARE FOR INTERIM REVIEW AND ARE NOT INTENDED
DRIVE, STE. 300 TEXAS 76107 806-1700 870-2536 paienv.com	117575 NORTH ELDRIDGE PARKWAY BUILDING C TOMBALL, TEXAS 77377 PHONE - (832) 399-3400 WEB - www.eprusa.net	FOR CONSTRUCTION, BIDDING, OR PERMIT PURPOSES. TIMOTHY J. NOACK TEXAS P.E. NO. 54732 DATE: 7/8/2019
SSOCIATES, INC. ENGINEERING	ECOSYSTEM PLANNING & RESTORATION TEXAS REGISTERED ENGINEERING	DATE: 77672019

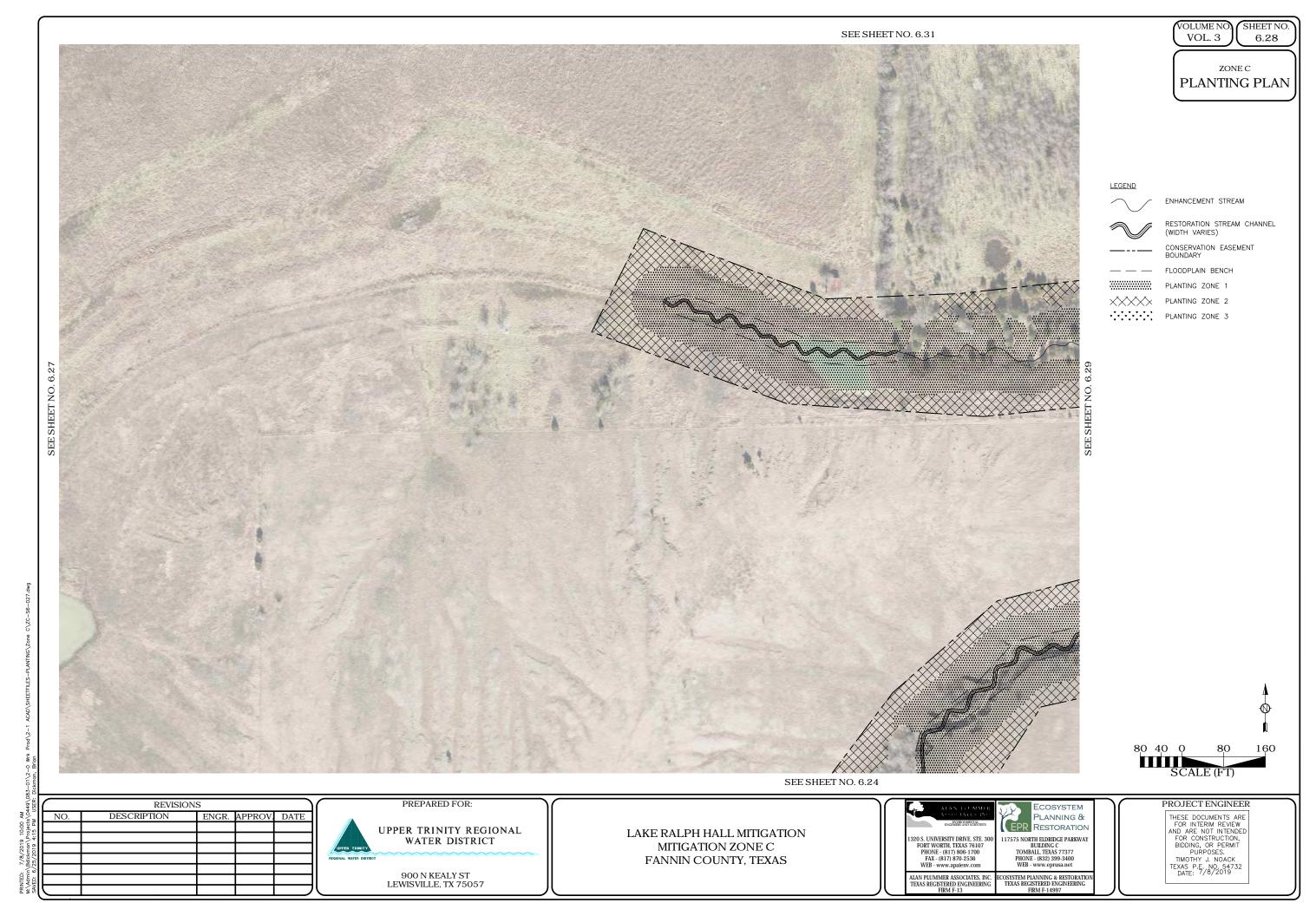


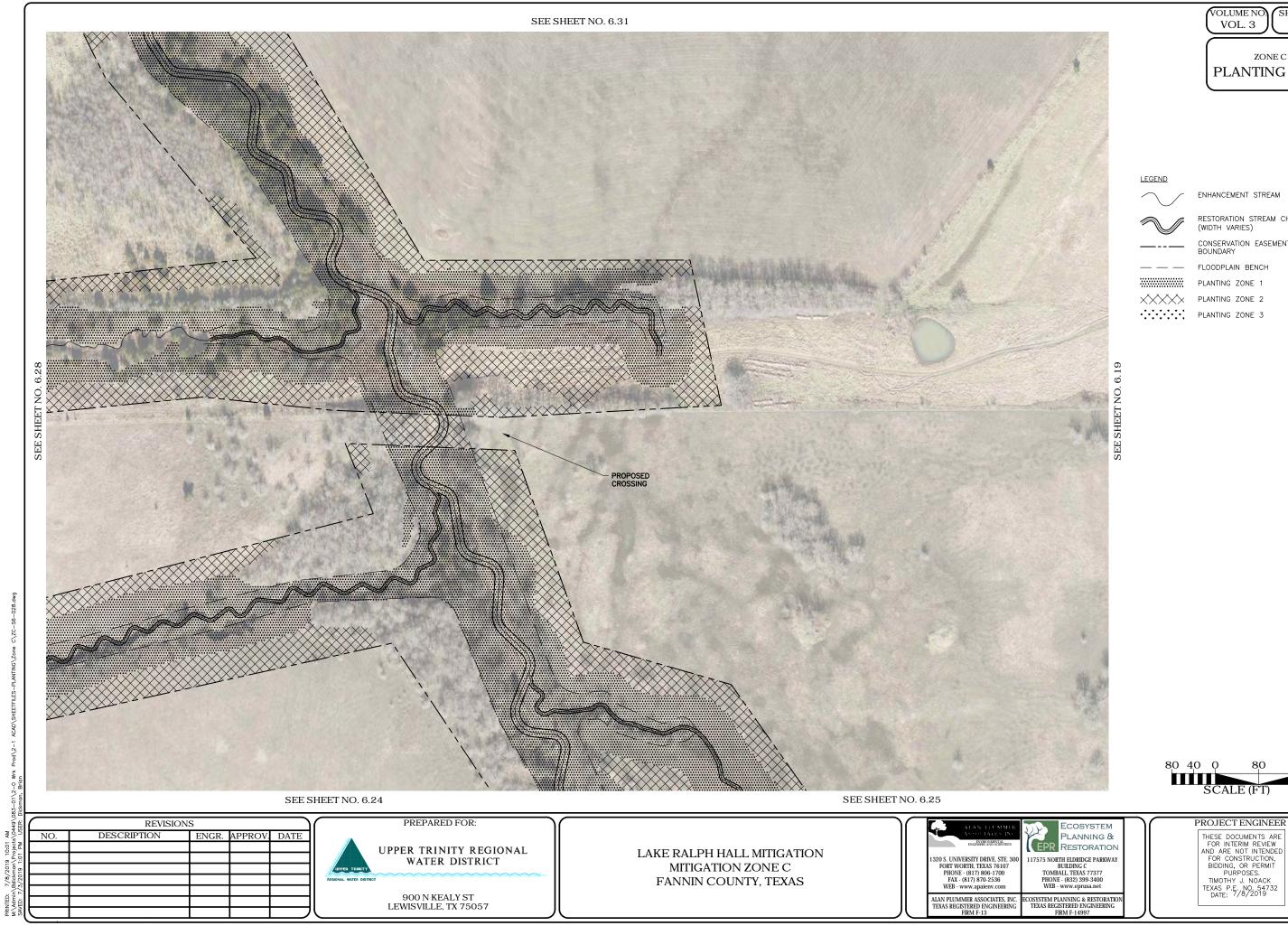

SHEET NO.


-100

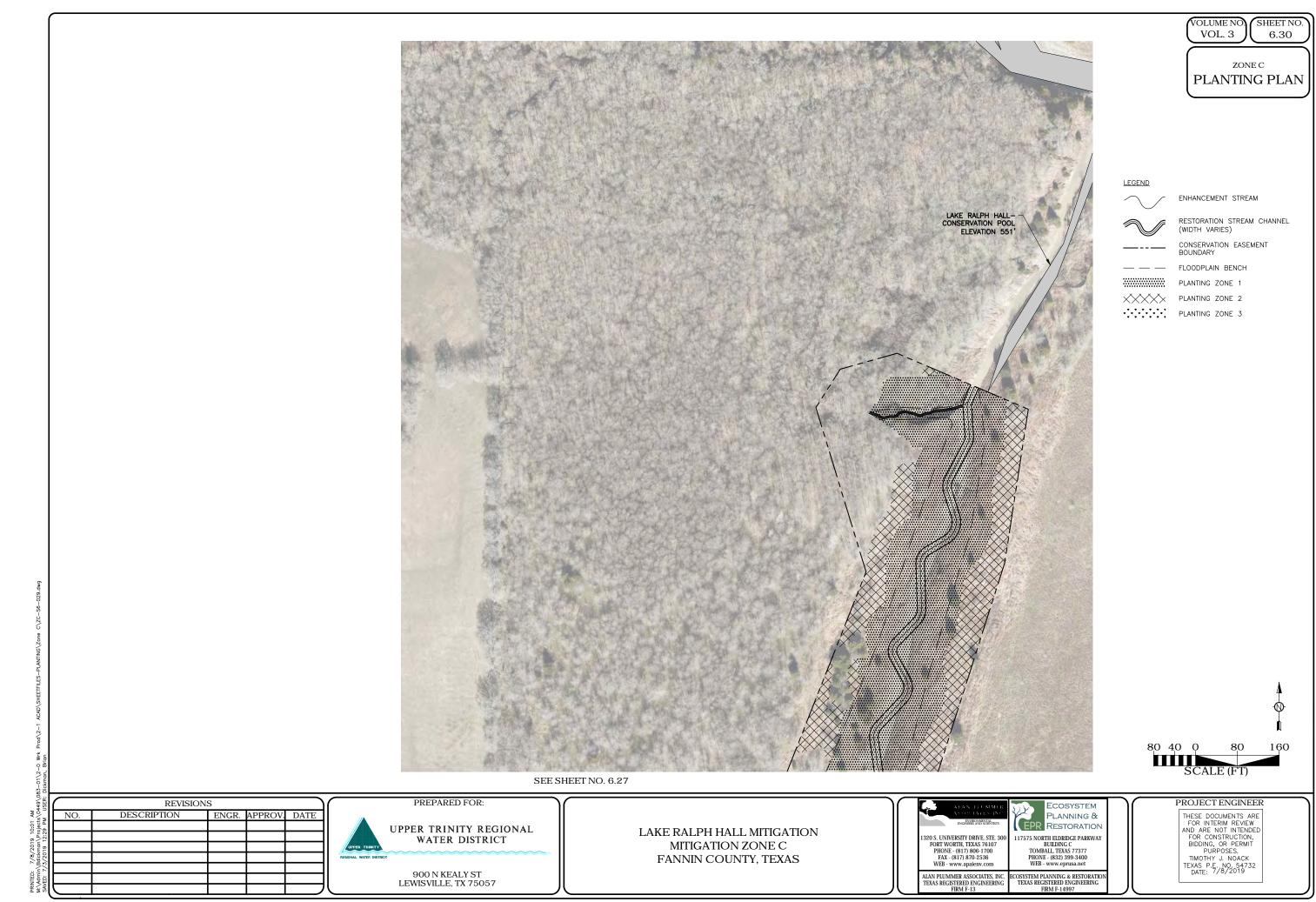

160

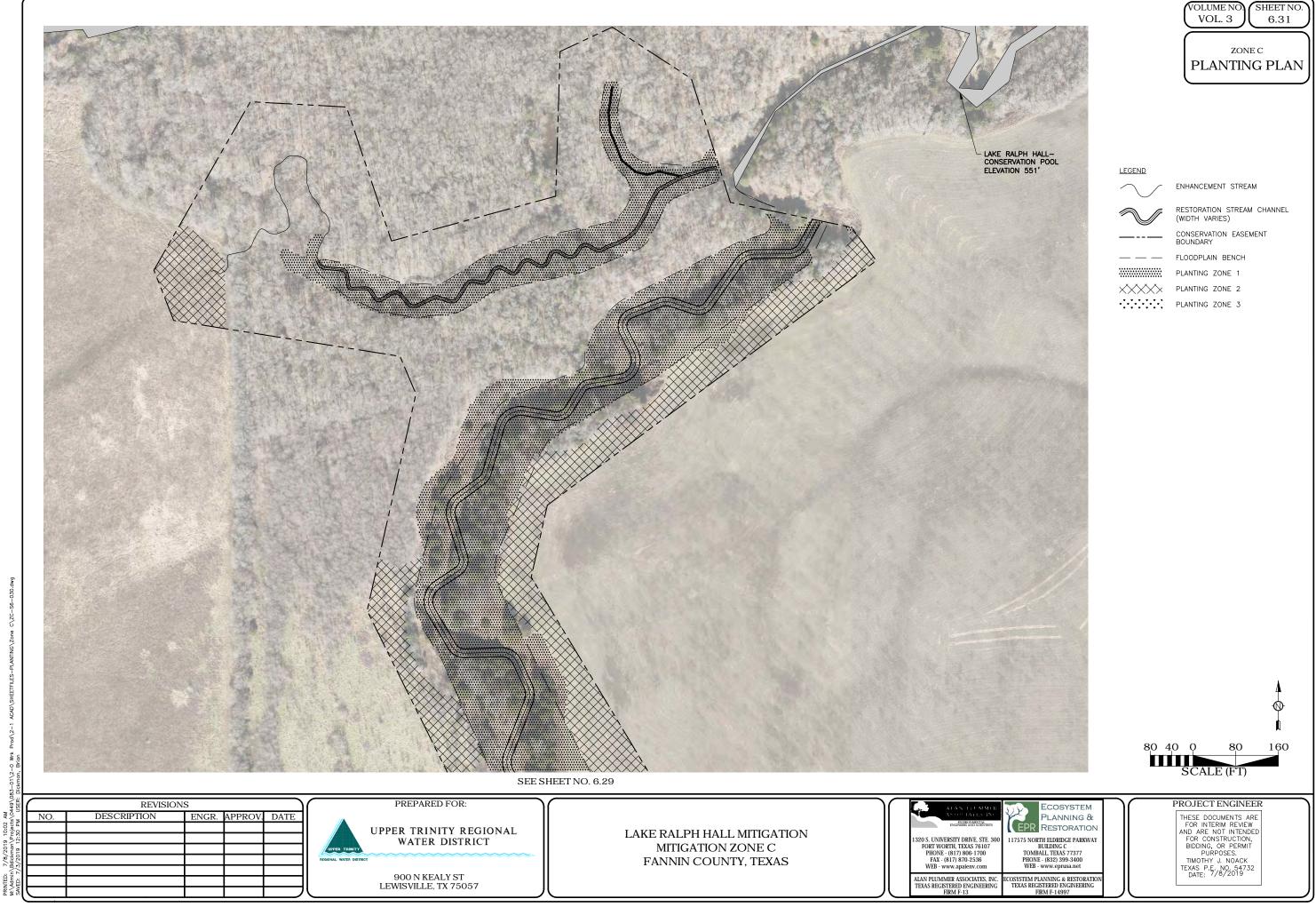
6.22

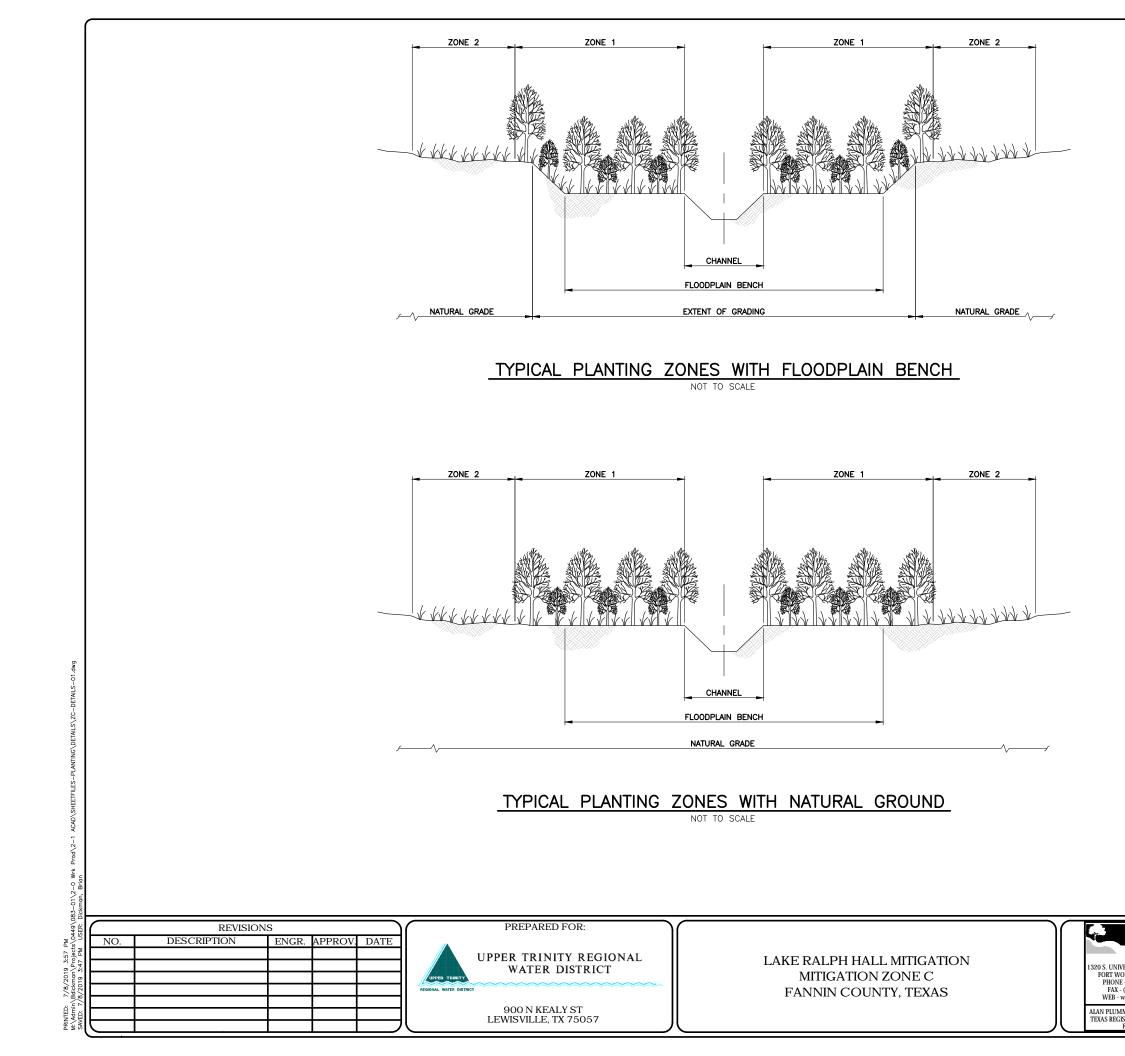




	VOLUME NO. VOL. 3 SHEET NO. 6.27
	ZONE C PLANTING PLAN
/	ENHANCEMENT STREAM
ſſ	RESTORATION STREAM CHANNEL (WIDTH VARIES)
	CONSERVATION EASEMENT BOUNDARY
	FLOODPLAIN BENCH
	PLANTING ZONE 1
\times	PLANTING ZONE 2
	PLANTING ZONE 3


Ð





	VOLUME NO. VOL. 3 SHEET NO. 6.29
	ZONE C PLANTING PLAN
_	ENHANCEMENT STREAM
	ENHANGEMENT STREAM
ļ	RESTORATION STREAM CHANNEL (WIDTH VARIES)
-	CONSERVATION EASEMENT BOUNDARY
-	FLOODPLAIN BENCH
:	PLANTING ZONE 1
×	PLANTING ZONE 2
	PLANTING ZONE 3

 \odot

_

VOLUME NO VOL. 3)(S	HEET 1 6.32	
PLANTIN AND		DETA	ILS
	NO	TES	

NOTES:

- 1. CHANNEL WILL MEANDER WITHIN THE FLOODPLAIN BENCH.
- 2. REFER TO TABLE 6.1. 6.2, AND 6.3 FOR STREAM MITIGATION PLANTINGS.
- 3. PLANTING ZONE 1 WILL BE A MINIMUM 60' WIDE AS MEASURED FROM THE OUTSIDE TOP OF BANK. IF EXTENT OF GRADING IS BEYOND 60', EXTEND WIDTH OF PLANTING ZONE 1 TO COVER BARE GROUND. PLANTINGS WITHIN ZONE 1 WILL INCLUDE HERBACEOUS SEED MIX FROM TABLE 6.3 AND TREE/SHRUB PLANTINGS FROM TABLE 6.1 AND 6.2.
- 4. PLANTING ZONE 2 WILL BE A MINIMUM OF 30' WIDE AS MEASURED FROM THE OUTSIDE OF ZONE 1. PLANTINGS WITHIN ZONE 2 SHALL INCLUDE HERBACEOUS SEED MIX FROM TABLE 6.3. EXISTING DESIRABLE PLANT SPECIES (NATIVE GRASS, SHRUBS, TREES) WITHIN ZONE 2 MAY REMAIN.
- 5. UNDESIRABLE SPECIES SHALL BE REMOVED PER MITIGATION PLAN.
- 6. ALL DISTURBED AREAS DUE TO CONSTRUCTION ACTIVITIES SHALL BE PLANTED WITH HERBACEOUS SEED MIX PER TABLE 6.3 AND IF WITHIN 60' OF STREAM CHANNEL SHALL ALSO BE PLANTED WITH TREE/SHRUB PLANTINGS PER TABLE 6.1 AND 6.2.
- EXISTING DESIRABLE TREE, SHRUB AND HERBACEOUS SPECIES WITHIN PLANTING ZONE 1 SHALL REMAIN, FOR AREAS WITH EXISTING TREE CANOPY, CONTRACTOR SHALL PLANT SHRUB/SMALL TREES (MID STORY) AS NEEDED TO ENHANCE RIPARIAN CORRIDOR.
- 8. CONTRACTOR SHALL PLANT CANOPY TREE SPECIES FROM TABLE 6.1 SUCH THAT ZONE 1 ACHIEVES A MINIMUM OF 60 PERCENT CANOPY COVER WITHIN 7 YEARS OF PLANTING EFFORT. ONE SINGLE CANOPY TREE SPECIES SHALL NOT OCCUPY GREATER THAN 30% COVERAGE IN ZONE 1. CANOPY TREE SPECIES SHALL BE SPACED TO ACHIEVE MAXIMUM CANOPY TREE COVER WITHIN ZONE 1.

Strata	Common Name	Scientific Name
	American Elm	Ulmus americana
	Black Walnut	Juglans nigra
	Bois d'Arc	Maclura pomifera
	Bur Oak	Quercus macrocarpa
	Cedar Elm	Ulmus crassifolia
Canopy Tree	Chinkapin Oak	Quercus muehlenbergii
	Pecan	Carya illinoensis
	Shumard Oak	Quercus shumardii
	Texas Ash	Fraxinus texensis
	Water Oak	Quercus nigra
	Willow Oak	Quercus phellos

*See Note 1

TABLE 6.2: STREAM BANK AND PLANTING ZONE 1 UNDERSTORY TREES AND SHRUB SPECIES

Strata	Common Name	Scientific Name
	American Beautyberry	Callicarpa americana
	Buttonbush	Cephalanthus occidentalis
	Common or Texas Persimmon	Diospyros virginianum or D. texana
	Coralberry	Symphoricarpos orbiculatus
Small Tree and	Deciduous Holly	llex decidua
Shrub	Eastern Redbud	Cercis canadensis
	Eve's Necklace	Sophora Affinis
	Mexican Plum	Prunus mexicana
	Rough-leaf Dogwood	Cornus drummondii
	Rusty Blackhaw	Viburnum rufidulum
	Swamp Privet	Forestiera acuminata

TypeCommon NameScientific NameBig BluestemAndropogon gerardiiBushy BluestemAndropogon gerardiiBushy BluestemBothriochioa barbinodisCane BluestemBothriochioa barbinodisEastern GamagrassTrips acum datifioldesFlorida PaspalumPaspalum floridanumGreen SprangletopLeptochioa dubiaInland SeaoatsChasmanthium latifoliumGrassesPlains BristlegrassSetaria vulpisetePrairio WildrycElymus canadensisSand DropscedSporbolus cryptendrusSideoats GramaBouteloua curtipendulaSwitchgrassPanicum virgatumTexas CupgrassNassella leucotrichaVinginia WildrycElymus virginicusWhite TridensTridens albescensLegumesBlack-eyed SusanRudbeckia hirtaBlack-eyed SusanRudbeckia hirtaBlack-eyed SusanChamaecrista fasciculataGraina FlowerLobelia cardinalisCardinal FlowerLobelia cardinalisCardinal FlowerLobelia cardinalisCardinal FlowerLobelia cardinalisCuteaf DaisyEngelmannia pinnatifideForbsPlains CorcopsisCorcopsis tinctoriaPlains CorcopsisC	ADEE 0.0. OTREP	In DAtion Dati into Edite Trate	
Bushy Bluestem Andropogon glomeratus Cane Bluestern Bothriochloa barbinodis Eastern Gamagrass Tripsacum dactyfoldes Florida Paspalum Paspalum floridanum Green Sprangletop Leptochloa dubia Indiangrass Sorghastrum nutans Inland Seaoats Chasmanthium latifolium Grasses Plains Bristlegrass Searria vulpisete Prairio Wildryc Elymus canadensis Sand Dropsoed Sporabolus cryptendrus Sideoats Grama Bouteloua curtipendula Switchgrass Panicum virgatum Texas Cupgrass Eriochloa sericea Texas Wintegrass Nassella leucotricha Virginia Wildrye Elymus virginicus White Tridens Tridens albescens Illinois Bundleflower Desmanthus illinoensis Legurnes Black-eyed Susan Rudbeckia hirda Black-eyed Susan Rudbeckia hirda Black-eyed Susan Rudbeckia hirda Cardinal Flower Lobelia cardinalis Clasping Coneflower Drobalanthus occidentalis Caleaf Da	Type	Common Name	Scientific Name
Care Bluestern Bothriochia barbinodis Eastern Garagrass Tripsacum dactyloides Florida Paspalum Paspalum floridarum Green Sprangletop Leptochio dubia Indiangrass Sorghastrum nutans Inland Seacats Chasmanthium lati/olium Grasses Plains Bristlegrass Setaria vulpiseta Prairie Wildryc Elymus canadensis Sand Dropsoed Sporabolus cryptandrus Sideoats Grama Bouteloua curtiperdula Switchgrass Panicum virgatum Texas Cupgrass Elionitos sericea Texas Wintegrass Nassella leucotricha Virgina Wildryc Elymus virginicus White Tridens Tridens albescens Illinois Bundleflower Desmanthus illinoensis Legumes Platridy Pea Chamaeensia fasciculata Black-eyed Susan Rudbeckia hirta Butonbush Cephalanthus occidentalis Clasping Coneflower Drecopis amplexicaulis Culaef Daisy Engelmannia pinnatifide Frostweed Verbesina vaginicica Giant Goldenr		Big Bluestern	Andropogon gerardii
Eastern Gamagrass Tripsacum dactytoides Florida Paspalum Paspalum Roridanum Green Sprangletop Leptochloa dubia Indiangrass Sorghastrum nutans Inland Seaoats Chasmanthium lattoflum Grasses Plains Bristlegrass Setaria vulpiseta Prairie Wildrye Elymus canadensis Sand Dropsoed Sporebolus cryptandrus Sideoats Grama Bouteloua curtipendula Switchgrass Panicum virgatum Texas Cupgrass Elymus virginicus Wintegrass Nassefla leucofrichia Virginia Wildrye Elymus virginicus White Tridens Tridens albescens Illinois Bundleflower Desmanthus illinoensis Legumes Illinois Bundleflower Desmanthus cicklertalis Grassing Coneflower Dracopis amplexicaulis Clasping Coneflower Cardinal Flower Lobelia cardinalis Clasping Coneflower Calesping Coneflower Dracopis amplexicaulis Culleaf Daisy Culleaf Daisy Engelmannia pinnatifide Frostweed Verbesina virginica <t< td=""><td></td><td>Bushy Bluestem</td><td>Andropogon glomeratus</td></t<>		Bushy Bluestem	Andropogon glomeratus
Florida Paspalum Paspalum floridanum Green Sprangletop Leptochloa dubia Indiangrass Sorghastrum rutans Indiand Seaoats Chasmanthium lattolium Brians Bristlegrass Setaria vulpiseta Prainic Wildryc Elymus canadensis Sand Dropsced Sporobolus cryptandrus Sideoats Grama Bouteloua curtipendula Switchgrass Panicum virgatum Texas Cupgrass Eriochloa sericea Texas Cupgrass Nassella leucotricha Virginia Wildrye Elymus virginicus White Tridens Tridens albescens Legumes Illinois Bundleflower Desmanthus illinoensis Back-eyed Susan Rudbeckia hirta Buttonbush Caphalanthus occidentalis Clasping Coneflower Dracopis amplexicaulis Cutleaf Daisy Englemannia prinatifide Forbs Plains Sunflower Heianthus maximilari Plains Corcopsis Corcopsis doceadra Gradinal Flower Lobella cardinalis Clasping Coneflower Dracopis amplexicaulis Cutleaf		Cane Bluestern	Bothriochloa barbinodis
Green Sprangletop Leptochloa dubia Indiangrass Sorghastrum rutans Indiangrass Sorghastrum rutans Inland Seaoats Chasmanthium lattofum Plains Bristlegrass Setaria vulpiseta Prairio Wildryc Elymus canadensis Sand Dropsoed Sporobolus cryptandrus Sideoats Grama Bouteloua curtipendula Switchgrass Panicum virgatum Texas Cupgrass Eriochloa sericea Texas Wintegrass Nassefla leucotricha Virginia Wildrye Elymus virginicus White Tridens Tridens albescens Illinois Bundleflower Desmanthus illinoensis Partridge Pea Chamaecrista fasciculata Black-eyed Susan Rudbecka hirta Butonbush Cephalanthus occidentalis Clasping Coneflower Dracopis amplexicaulis Cutleaf Daisy Engelmannia prinatifida Frots Plains Coreopsis Coreopsis dificara Gradinal Flower Lobelia cardinalis Clasping Coneflower Clasping Coneflower Dracopsis amplexicaulis Cutardi alias		Eastern Gamagrass	Tripsacum dactyloides
Indiangrass Sorghastrum nutans Inland Seaoats Chasmanthium latiolium Grasses Plains Bristlegrass Setaria vulpisete Prairio Wildrye Ellymus canadensis Sand Dropsoed Sporobolus cryptendrus Sideoats Grama Bouteloua curtipendula Switchgrass Panicum virgatum Texas Cupgrass Eriochiloa sericea Texas Wintergrass Nassella leucotricha Virginia Wildrye Elymus virginicus White Tridens Tridens albescens Illinois Bundleflower Desmanthus dilinoensis Partridge Pea Chamaeorista fasciculata Black-eyed Susan Rudbeckia hirda Butonbush Cophaanthus occidentalis Cardinal Flower Lobelia cardinalis Clasping Coneflower Dracopis amplexicaulis Culteal Daisy Engelmannia pinnatifide Forbs Plains Coreopsis Coreopsis directricia Plains Coreopsis Coreopsis tinctoria Plains Coreopsis Coreopsis dodecandra Rose Milkweed Asclepras incarnata Scartet		Florida Paspalum	Paspalum floridanum
Inland Seaoats Chasmanthium latiolium Grasses Plains Bristlegrass Setaria vulpiseta Prairio Wildryc Elymus canadensis Sand Dropsced Sporabolus cryptandrus Sideoats Grama Boutetous curtipendula Switchgrass Panicum virgatum Texas Cupgrass Eriochloa sericea Texas Wintegrass Nassella leucotricha Virginia Wildryc Elymus virginicus White Tridens Tridens albescens Illinois Bundleflower Desmanthus illinoensis Partridge Pea Chamaeensta fassiculata Black-eyed Susan Rudbeckia hirta Butonbush Cephalanthus occidentalis Cardinal Flower Lobelia cardinalis Clasping Coneflower Dracopis amplexicaulis Cutleaf Daisy Engelmannia pinnatifide Frostweed Verbesina virginica Giant Goldenrod Solidago gigantea Lomon Mint Monarda citridora Maximilian Sunflower Helianthus maximiliani Plains Corcopsis Corcopsis tinctoria Pink Evening Prinrose <td< td=""><td></td><td>Green Sprangletop</td><td>Leptochloa dubia</td></td<>		Green Sprangletop	Leptochloa dubia
Grasses Plains Bristlegrass Setaria vulpiseta Prairio Wildryc Elymus canadensis Sand Dropsced Sporobolus cryptendrus Sideoats Grama Bouteloua curtipendula Switchgrass Panicum virgatum Texas Cupgrass Eriochloa senicea Texas Untergrass Nassefla leucotricha Virginia Wildrye Elymus virginicus White Tridens Tridens albescens Illinois Bundleflower Desmanthus illinoensis Particup Black-eyed Susan Rubeckia hirta Buttonbush Clasping Coneflower Dracopis amplexicaulis Clasping Coneflower Dracopis amplexicaulis Culted Daisy Engelmannia primatifide Forbs Plains Corcepsis Corceopsis directricationa Plains Corcepsis Corceopsis directria 2 Plains Corcepsis Corceopsis directria 2 Plains Corcepsis Corceopsis directoria 2 Plains Corcepsis Corceopsis directoria 2 Plains Corcepsis Corceopsis directria 2 <		Indiangrass	Sorghastrum nutans
Prairie Wildrye Elymus canadensis Sand Dropsced Sporobolus cryptandrus Sideoats Grama Bouteloua curtipendula Switchgrass Panicum virgatum Texas Cuprass Eriochloa sericea Texas Wintergrass Nassella leucotricha Virginia Wildrye Elymus virginicus White Tridens Tridens albescens Illinois Bundleflower Desmanthus illinoensis Partridge Pea Chamaecrista fasciculata Black-eyed Susan Rudbeckia hirta Buttonbush Caphalanthus occidentalis Cardinal Flower Lobella cardinalis Cardinal Flower Lobella cardinalis Cated Toisy Engelmannia primatifide Frostweed Verbesina virginica Giant Goldenrod Solidago gigantea Lemon Mint Morandra citridora Maximilian Sunflower Helianthus maximilani Plains Corcopsis Corcopsis and citridora Redwhisker Clammyweed Polanisa dodecandra Rose Milkweed Asclepas incarnata Scarlet Sage Salvia coccinee <tr< td=""><td></td><td>Inland Seacais</td><td>Chasmanthium latifolium</td></tr<>		Inland Seacais	Chasmanthium latifolium
Sand Dropsced Sporobolus cryptandrus Sideoats Grama Boutetoua curtipendula Switchgrass Paricum virgatum Texas Cupgrass Eriochloa sericea Texas Wintegrass Nassella leucotricha Virginia Wildrye Elymus virginicus White Tridens Tridens albescens Legumes Illinois Bundleflower Desmanthus illinonsis Partridge Pea Chamaecrista fasciculata Black-eyed Susan Rudbeckia trita Cuteat Daisy Englemania prinatifida Cuteat Daisy Englemania prinatifida Giant Goldenrod Solidago gigantea Lomon Mint Monarda citridora Maximilian Sunflower Helianthus maximiliani Plains Coreopsis Coreopsis tinctoria Pink Evening Primrose Oenothera speciosa Redwhisker Clarnmyweed Asclepas incarnata Scartet Sage Salvia coccinea Swamp Sunflower Helianthus magustifolius Tail Goldenrod Solidago altesitua	Grasses	Plains Bristlegrass	Setaria vulpiseta
Sideoats Grama Boutelous curtipendula Switchgrass Panicum virgatum Texas Cupgrass Eriochloa sencea Texas Wintergrass Nassella leucotricha Virginia Wildrye Elymus virginicus White Tridens Tridens albescens Illinois Bundleflower Desmanthus illinoensis Partridge Pea Charmaecrista fasciculata Black-eyed Susan Rudbeckia hirda Butonbush Cephalanthus occidentalis Cardinal Flower Drecopis amplexicaulis Cutleaf Daisy Engelmannia pinnatilide Frostweed Verbesina vorginica Giant Goldenrod Solidage gigantea Lomon Mint Monarda citridora Maximilian Sunflower Helianthus maximiliani Plains Coreopsis Coreopsis tinctoria Pink Evening Primrose Oenothera speciosa Redwhisker Clarmyweed Asclepras incarnata Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus magustifolius Tail Goldenrod Solidage datisairma		Prairie Wildrye	Elymus canadensis
Switchgrass Panicum virgatum Texas Cupgrass Eriochloa sericea Texas Wintergrass Nassella leucotricha Virginia Wildrye Elymus virginicus White Tridens Tridens albescens Illinois Bundleflower Desmanthus illinoensis Partridge Pea Chamaecrista fasciculata Black-eyed Susan Rudbeckia hirta Buttonbush Cephalanthus cicklentalis Clasping Coneflower Dracopis amplexicaulis Cutleaf Daisy Engelmannia pinnatříde Frostweed Verbesina virginica Glant Goldenrod Solidago gigantea Lomon Mint Monarda citridora Plains Corcopsis Coreopsis tinctoria Plains Corcopsis Coreopsis docenarda Redwhisker Clammyweed Polarisra dodecandra Rose Milkweed Asclepras incarnata Scarlet Sage Salvía coccinea Swamp Sunflower Heilanthus angustifolius Tall Goldenrod Solidago altesiticau		Sand Dropseed	Sporobolus cryptandrus
Texas Cupgrass Eriochioa sericea Texas Wintergrass Nassella leucotricha Virginia Wildrye Elymus virginicus White Tridens Tridens albescens Illinois Bundleflower Desmanthus illinoensis Partridge Pea Chamaecrista fasciculata Black-eyed Susan Rudbeckia hirta Buttonbush Cephalanthus occidentalis Calasping Coneflower Dracopis amplexicaulis Culaef Daisy Engelmania pinnatifide Forbs Fostweed Verbesina virginica Gliant Goldenrod Solidago gigantea Lomon Mint Monarda citridora Maximilian Sunflower Helianthus maximiliani Plains Corcopsis Coreopsis Incorrai Redwhisker Clammyweed Polanisia dodecandra Rose Milkweed Asclepias incarnata Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus magustifolius Tall Goldenrod Solidago altissima		Sideoats Grama	Bouteloua curtipendula
Texas Wintergrass Nassella leucotricha Virginia Wildrye Elymus virginicus White Tridens Tridens albescens Illinois Bundleflower Desmanthus illinoensis Partridge Pea Chamaecrista fasciculata Black-eyed Susan Rubbeckia hirta Buttonbush Cephalanthus occidentalis Clasping Coneflower Dracopis amplexicaulis Cuteaf Daisy Engelmannia pinnatifide Forbs Giant Goldenrod Solidago gigantea Locmon Mint Monarda citridora Maximilian Sunflower Helianthus maximulani Plains Corcopsis Coreopsis Inctoria Pink Evening Primrose Oenothera speciosa Redwhisker Clammyweed Polanisa dodecandra Rose Milkweed Asclepas incarnata Scarlet Sage Salvia coccinee Swamp Sunflower Helianthus angustifolius Tall Goldenrod Solidago altissima		Switchgrass	Panicum virgatum
Virginia Wildrye Elymus virginicus White Tridens Tridens albescens Legumes Illinois Bundleflower Desmanthus illinoensis Partridge Pea Chamaeensta fasciculata Black-eyed Susan Rudbeckia thirta Buttonbush Cephalanthus occidentalis Cuteat Daisy Englemania prinatidida Guiat Goldenrod Solidago gigantea Lomon Mint Monarda citridora Maximilian Sunflower Helianthus maximiliani Plains Coreopsis Coreopsis finctoria Pink Evening Primrose Oenothera speciosa Rese Milkweed Asclepas incarnata Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus magustifolius Tall Goldenrod Solidago altesitua		Texas Cupgrass	Eriochioa sericea
White Tridens Tridens albescens Legumos Illinois Bundleflower Desmanthus illinoensis Partridge Pea Charmaecrista fasciculata Black-eyed Susan Rudbeckia hirta Buttonbush Cephalanthus occidentalis Cardinal Flower Lobelia cardinalis Clasping Coneflower Drecopis amplexicaulis Cuteaf Daisy Engelmannia pinnatifide Frostweed Verbesina vorginica Glant Goldenrod Solidago gigantea Lomon Mint Monarda citridora Maximilian Sunflower Helianthus maximiliani Plains Coreopsis Coreopsis tinctoria Pink Evening Primrose Oenothera speciosa Redwhisker Clarnmyweed Polarisra dodecandra Rose Milweed Asclepras incarnata Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus magustifolius Tall Aster Symphyotirchus angustifolius		Texas Wintergrass	Nassella leucotricha
Legumes Illinois Bundleflower Desmanthus illinoensis Partridge Pea Chamaecrista fasciculata Black-eyed Susan Rudbeckia hirta Buttonbush Cephalanthus occidentalis Cardinal Flower Lobella cardinalis Clasping Coneflower Dracopis amplexicaulis Cutleaf Daisy Engelmannia primatifide Frostweed Verbesina virginica Giant Goldenrod Solidago gigantea Lomon Mint Monarda citridora Maximilian Sunflower Heianthus maximiliani Plains Corcopsis Coreopsis inctoria Pink Evening Primrose Oenothera speciosa Redwhisker Clammyweed Asclepias incarnata Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus angustifolius Tall Goldenrod Solidago altissima		Virginia Wildrye	Elymus virginicus
Legumes Partridge Pea Chamaecrista fasciculata Black-eyed Susan Rudbeckia hirta Buttonbush Cephalanthus occidentalis Cardinal Flower Lobella cardinalis Clasping Coneflower Dracopis amplexicaulis Cutled Daisy Engelmannia pinnatifide Frostweed Verbesina viginica Glant Goldenrod Solidago gigantea Lomon Mint Monarda citridora Plains Corcopsis Corcopsis tinctoria Plains Corcopsis Coreopsis tinctoria Redwhisker Clammyweed Polanisia dodecandra Rose Milkweed Asclephas incarnata Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus angustifolius Tall Goldenrod Solidago altissima		White Tridens	Tridens albescens
Partridge Pea Charmaecrista fasciculata Black-eyed Susan Rudbeckia hirta Blutonbush Cephalanthus occidentalia Cardinal Flower Lobella cardinalis Clasping Coneflower Dracopis amplexicaulis Cutleaf Daisy Engelmannia pinnatifide Frostweed Verbesina virginica Glant Goldenrod Solidage gigantea Lomon Mint Monarda citridora Maximilian Sunflower Helianthus maximiliani Plains Coreopsis Coreopsis tinctoria Pink Evening Primose Oenothera speciosa Redwhisker Clammyweed Polarisia dodecandra Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus magustifolius Tall Goldenrod Solidage altissima		Illinois Bundleflower	Desmanthus illinoensis
Buttonbush Cephalanthus occidentalis Cardinal Flower Lobella cardinalis Clasping Coneflower Drecopis amplexicaulis Cutleaf Daisy Engelmannia pinnatidida Frostweed Verbesina voginica Giant Goldenrod Solidago gigantea Lomon Mint Monarda citridora Plains Corcopsis Corcopsis finctoria Pink Evening Primrose Oenothera speciosa Rose Milkweed Asclepas incarnata Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus angustifolius Tall Goldenrod Springhyotirchum praealtum	Legumes	Partridge Pea	Chamaecrista fasciculata
Cardinal Flower Lobelia cardinalis Clasping Coneflower Dracopis amplexicaulis Cutleaf Daisy Engelmannia pinnatifide Frostweed Verbesina virginica Glant Goldenrod Solidago gigantea Lomon Mint Monarda citridora Maximilian Sunflower Helianthus maximilani Plains Coreopsis Coreopsis tinctoria Pink Evening Primrose Oenothera speciosa Redwhisker Clammyweed Polarisia dodecandra Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus angustifolius Tall Aster Symphyotrichum praealtum Tall Goldenrod Solidago altissima		Black-eyed Susan	Rudbeckia hirta
Clasping Coneflower Drecopis amplexicaulis Cutleaf Daisy Engelmannia pinnatifida Frostweed Verbesina vaginica Glant Goldenrod Solidago gigantea Lomon Mint Monarda citridora Maximilian Sunflower Helianthus maximiliani Plains Corcopsis Corcopsis tinctoria Pink Evening Primrose Oenothera speciosa Redwhisker Clammyweed Polariista dodecandra Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus angustifolius Tall Aster Symphyotirchum praeatum Tall Goldenrod Solidago altissima		Buttonbush	Cephalanthus occidentalis
Cutleaf Daisy Engelmannia pinnatifide Frostweed Verbesina virginica Giant Goldenrod Solidago gigantea Lomon Mint Monarda citridora Maximilian Sunflower Helianthus maximiliani Plains Corcopsis Corcopsis tinctoria Pink Evening Primrose Oenothera speciosa Redwhisker Clammyweed Polaritisa dodecandra Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus magustifolius Tall Goldenrod Solidago altissima		Cardinal Flower	Lobelia cardinalis
Frostweed Verbesina vaginica Giant Goldenrod Solidago gigantea Lemon Mint Monarda citridora Maximilian Sunflower Helianthus maximiliani Plains Corcopsis Corcopsis tinctoria Pink Evening Primrose Oenothera speciosa Redwhisker Clammyweed Polanista dodecandra Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus angustifolius Tall Goldenrod Solidago altissima		Clasping Coneflower	Dracopis amplexicaulis
Giant Goldenrod Solidago gigantea Lomon Mint Monarda citridora Maximilian Sunflower Helianthus maximiliani Plains Coreopsis Coreopsis tinctoria Pink Evening Primrose Oenothera speciosa Redwhisker Clammyweed Polariista dodecandra Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus angustifolius Tall Goldenrod Solidago altissima		Cutleaf Daisy	Engelmannia pinnatifida
Lomon Mint Monarda citridora Maximilian Sunflower Helianthus maximulani Plains Corcopsis Corcopsis tinctoria Pink Evening Primrose Denothera speciosa Redwhisker Clammyweed Polarisra dodecandra Rose Milkweed Asclepnas incarnata Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus angustifolius Tall Aster Symphyotrichum praeatum Tall Goldenrod Solidago altissima		Frostweed	Verbesina virginica
Maximilian Sunflower Helianthus maximuliani Plains Coreopsis Coreopsis tinctoria Pink Evening Primrose Oenothera speciosa Redwhisker Clammyweed Polariisra dodecandra Rose Milkweed Asclepnas incarnata Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus angustifolius Tall Aster Symphyotrichum praeatum Tall Goldenrod Solidago altissima		Giant Goldenrod	Solidago gigantea
Forbs Plains Corcopsis Coreopsis tinctoria Pink Evening Primrose Oenothera speciosa Redwhisker Clammyweed Polariista dodecandra Rose Milkweed Ascleptas incarnata Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus angustifolius Tall Goldenrod Solidago altissima		Lemon Mint	Monarda citridora
Plains Coreopsis Coreopsis Coreopsis Pink Evening Primrose Oenothera speciosa Redwhisker Clammyweed Polanisia dodecandra Rose Milkweed Ascleptas incarnata Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus angustifolius Tall Aster Symphyotrichum praealtum Tall Goldenrod Solidago altissima	. .	Maximilian Sunflower	Helianthus maximiliani
Redwhisker Clammyweed Polanisia dodecandra Rose Milkweed Asclepias incarnata Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus angustifolius Tall Aster Symphyotichum praealtum Tall Goldenrod Solidago altissima	Forbs	Plains Corcopsis	Coreopsis tinctoria
Redwhisker Clammyweed Polanisia dodecandra Rose Milkweed Asclepras incarnata Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus angustifolius Tall Aster Symphyotrichum praealtum Tall Goldenrod Solidago altissima		Pink Evening Primrose	Oenothera speciosa
Scarlet Sage Salvia coccinea Swamp Sunflower Helianthus angustifolius Tall Aster Symphyotrichum praeaitum Tall Goldenrod Solidago altissima		Redwhisker Clammyweed	Polanisia dodecandra
Swamp Sunflower Helianthus angustifolius Tall Aster Symphyotrichum praeaitum Tall Goldenrod Solidago altissima		Rose Milkweed	Asclepias incarnata
Tall Aster Symphyotrichum praealtum Tall Goldenrod Solidago altissima		Scarlet Sage	Salvia coccinea
Tall Aster Symphyotrichum praealtum Tall Goldenrod Solidago altissima		Swamp Sunflower	Helianthus angustifolius
Tall Goldenrod Solidago altissima			
		Tall Goldenrod	• • • • •
		Turk's Cap/Wax Mallow	• •

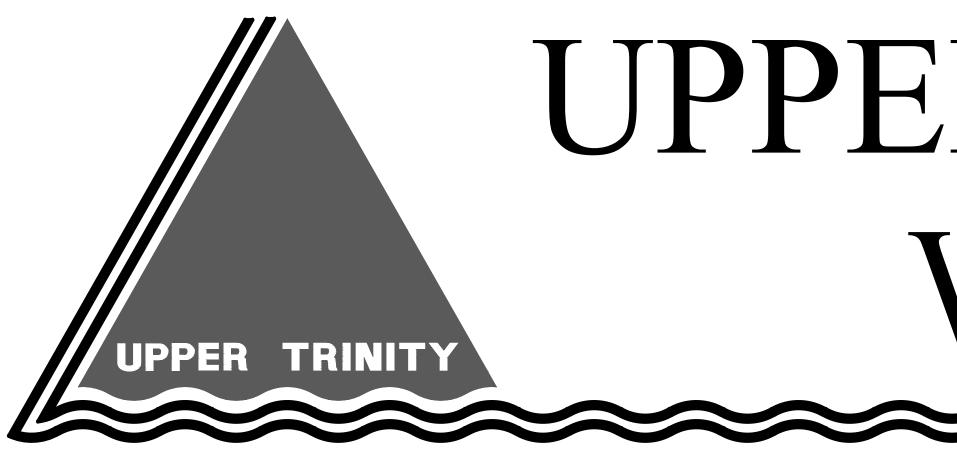
TAE	LE 6.3: STREAM BANK.P	LANTING ZONE 1 AND PLA	ANTING ZONE 2 HERBACEOUS	SPECIES

TABLE 6.4: PLANTING ZON E3 - WETLAND PLAN		
TEMPORARILY FLOODED AREAS		
Common Name	Scientifi	
SN ಸಂಗ್ರೇಹಿತ	Pancar wa	
Eastern Gartagrass	ಷ್⊊ ತಿಲ್ಲಿನ ನೆ	
	Concernation	

Eastern Gartagrass	1.75912.7 A
iniand Seacats	Chasmanian Atfeium
Green Sprangjetop	leptor ica d
Prainte Wildhye	ವಿಷಟ ೧೯೪
C'incis Bundlef ower	Cesmonstus
Partndge Paa	Otamateorisa fotatoa.etto
Swamo Sunflawer	hesorthus a
Pisins Coreopsis	Conecciente

TABLE 6.5: PLANTING ZONE 3 - WETLAND PLAN SEASONALLY FLOODED AREAS

Common Name	Scientific Nam
Swamp Smartweed	Polygonum
Swamp Smartweed	hydropiperoides
Spikerush	Eleocharis spp.
Sedges	Carex spp.
o	Eleocharis
Squarestem Spikerush	quadrangulata
Crowfoot Sedge	Carex crus-corvi
Duck Potato Arrowhead	Sagittaria latifolia
Soft Rush	Juncus effusus
Three courses buildingh	Schoenoplectus
Three-square bulrush	nungens



PREPARED FOR: REVISIONS DESCRIPTION ENGR. APPROV. DATE NO. UPPER TRINITY REGIONAL LAKE RALPH HALL MITIGATION WATER DISTRICT MITIGATION ZONE C FANNIN COUNTY, TEXAS 900 N KEALY ST LEWISVILLE, TX 75057 PRINTE M:\Adr

A TINGS FOR	VOLUME NO. VOL. 3 SHEET NO. 6.33
fic hame	ZONE C
y - h: - r	ZONE C
lan, baes	PLANTING TABLES
1	
áutra	
ider is a	
sérberss	
16	
angustécius	
ಗಡವನತ	NOTES:
ANTINGS FOR	1. CONTRACTOR SHALL PLANT CANOPY TREE SPECIES FROM TABLE 6.1 SUCH
fic Name	THAT ZONE 1 ACHIEVES A MINIMUM OF 60 PERCENT CANOPY COVER WITHIN 7 YEARS OF INITIAL PLANTING EFFORT, ONE
nides	SINGLE CANOPY TREE SPECIES SHALL
pp.	NOT OCCUPY GREATER THAN 30%
	COVERAGE IN ZONE 1. CANOPY TREE
	SPECIES SHALL BE SPACED TO ACHIEVE
lata	MAXIMUM CANOPY TREE COVER WITHIN ZONE 1.
corvi	ZONE I.

PLANTING ZONE 3 WILL CONSIST OF WETLAND PLANTINGS FROM TABLES 6.4 AND 6.5. FOR AREAS TEMPORARILY FLOODED, USE SEED MIX FROM TABLE 6.4. FOR AREAS SEASONALLY FLOODED, USE A MIX OF PLANTINGS FROM TABLE 6.5. PLANTING MAY OCCUR YEAR-ROUND.

REGIONAL WATER DISTRICT

LAKE RALPH HALL MITIGATION PROJECT VOLUME 4 NORTH SULPHUR RIVER MAIN CHANNEL- ZONE A

IJPPER TRINITY REGIONAL WATER DISTRICT

CONSTRUCTION PLANS FOR

OWNER

UPPER TRINITY REGIONAL WATER DISTRICT

Rich Lubke _____ President Ramiro Lopez _____ Vice President Mike Fairfield _____ Treasurer Brian Roberson_____ Secretary

Larry N. Patterson, PE ______ Executive Director Thomas W. Snyder _____ Director, Construction and Engineering Edward M. Motley, PE _____Lake Ralph Hall Program Manager

JULY 2019

BRYAN DICK, P.E. Freese and Nichols, Inc.

4055 International Plaza, Suite 200 Fort Worth, Texas 76109-4895 Phone - (817) 735-7300 Fax - (817) 735-7491

DRAFT

THIS DOCUMENT IS RELEASED FOR THE PURPOSE OF INTERIM REVIEW UNDER AUTHORITY OF: BRYAN DICK, P.E. TEXAS NO: 112211 ON DATE: 7/05/20 IT IS NOT TO BE USED FOR CONSTRUCTION IDDING OR PERMIT PURPOSES.

ACAD Rel: 23.0s (LMS Tech) Filename: N:\STANDARD\F-2 INDEX SHEET.dwg Last Saved: 7/18/2019 4:25 PM Saved By: 02418

Plot Date:

7/18/2019

5:15 PM

Plot By: 02418

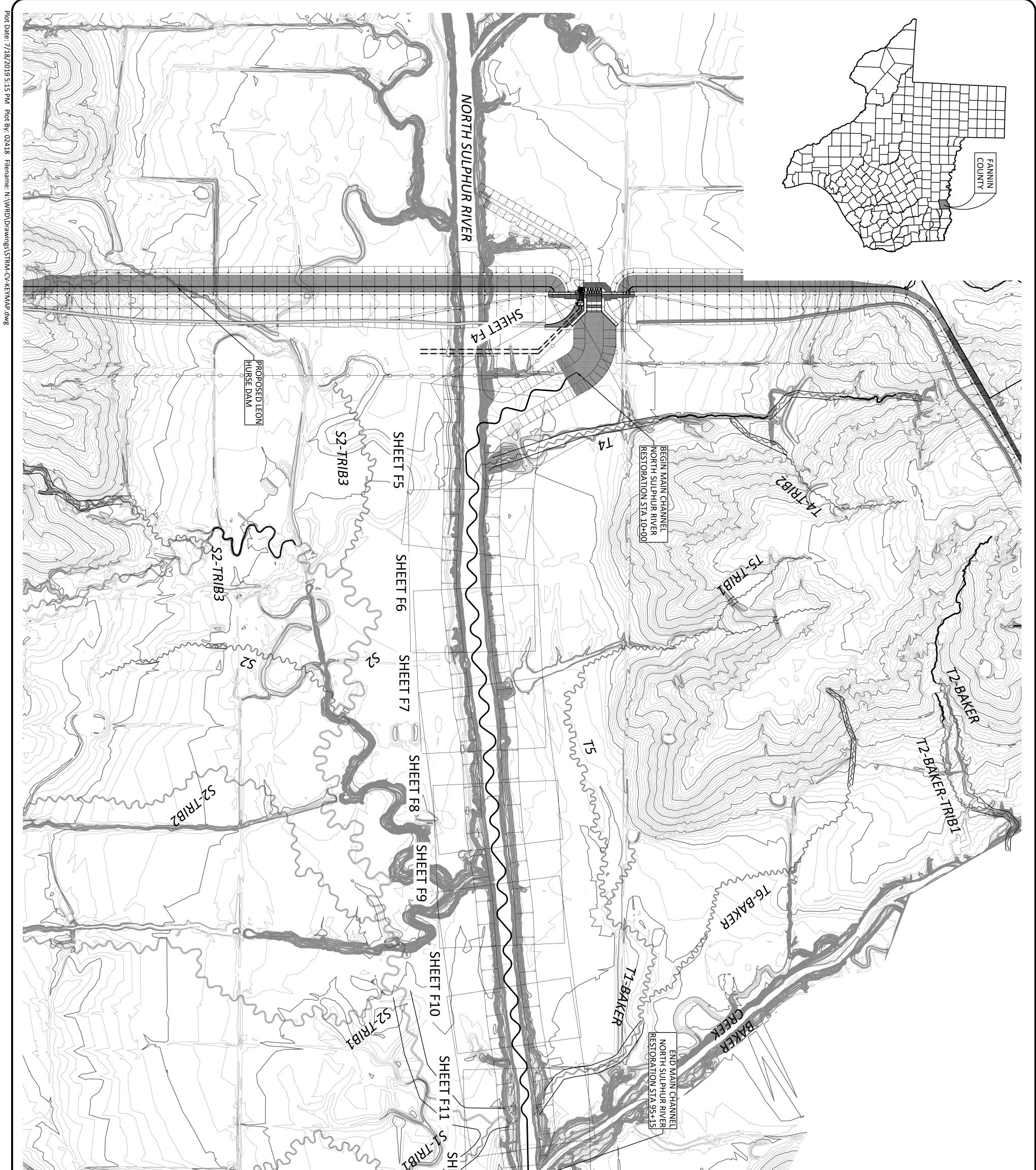
Filename:

N:\STANDARD\F-2 INDEX SHEET.dwg

																					SHEET	
F-21	F-20	F-19	F-18	F-17	F-16	F-15	F-14	F-13	F-12	F-11	F-10	F-9	F-8	F-7	F-6	F-5	F-4	F-3	F-2	F-1	ET NUMBER	
																					MBEF	

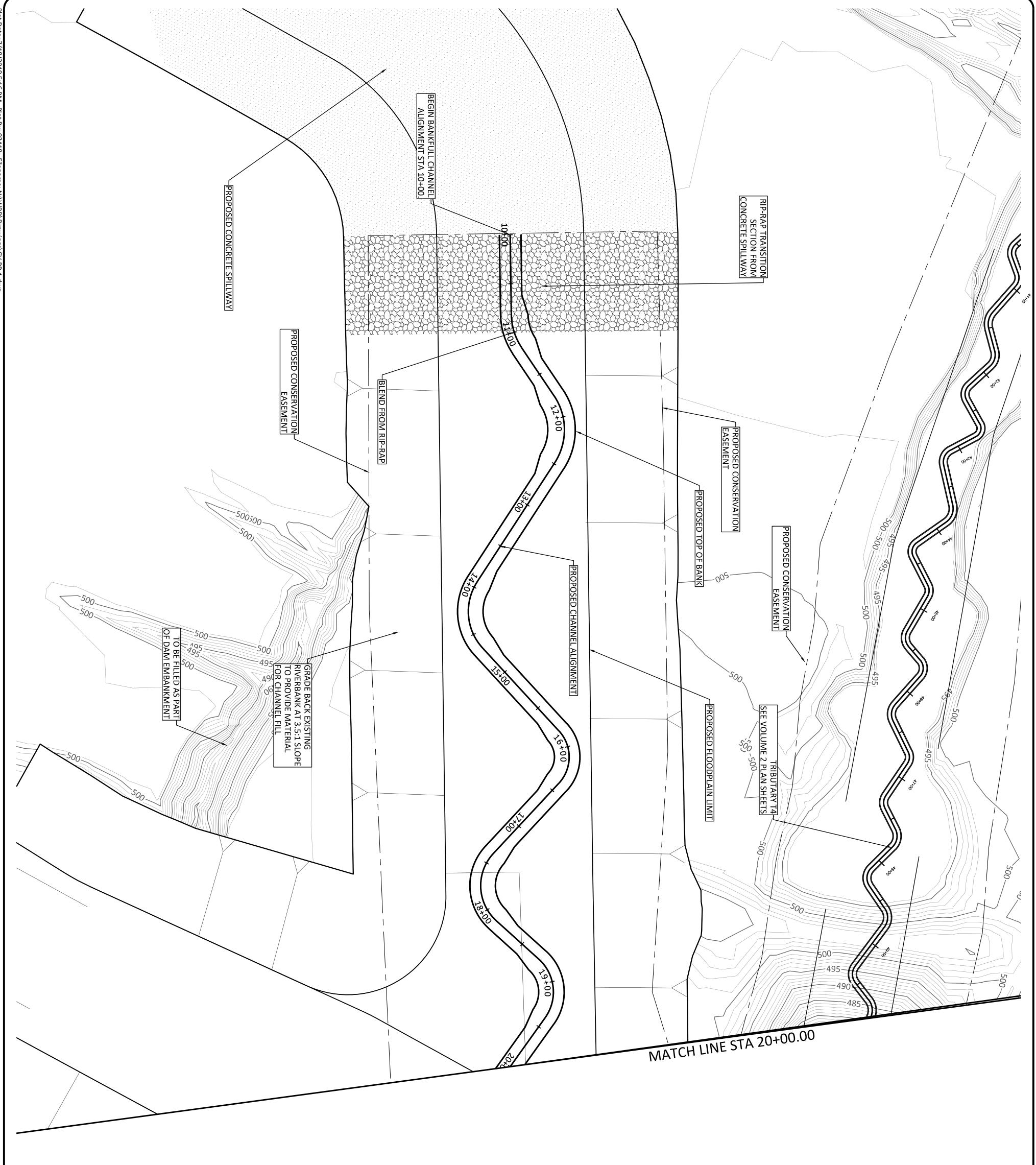
F-21	F-20	F-19	F-18	F-17	F-16	F-15	F-14	F-13	F-12	F-11	F-10	E-9	F-8	F-7	F-6	F-5	F-4	F-3	F-2	F-1	SHEET NUME	

						FLOOE		FLOODPI													R	DRAWING INDEX	
VEGETATION PLAN	DETAILS	DETAILS	DETAILS	DETAILS	TYPICAL SECTIONS	FLOODPLAIN STEP TYPICAL SECTION	STEP POOL DETAILS	FLOODPLAIN STEP PLAN & SECTION VIEW	STA 90+00 - STA 95+15	STA 80+00 - STA 90+00	STA 70+00 - STA 80+00	STA 60+00 - STA 70+00	STA 50+00 - STA 60+00	STA 40+00 - STA 50+00	STA 30+00 - STA 40+00	STA 20+00 - STA 30+00	STA 10+00 - STA 20+00	OVERALL LAYOUT	INDEX SHEET	COVER	SHEET NAME		

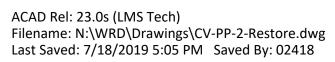

DRAFT DESIGN PLANS						Freese and Nichols, Inc. Texas Registered Engineering Firm F-2144
SEQ.	NO. ISSUE	BY DATE	F&N JOB NO. UTR18259	UPPER TRINITY REGIONAL WATER DISTRICT		
			DATE 7/18/2019 DESIGNED ####	LEON HURSE DAM		DRAFT THIS DOCUMENT IS RELEASED FOR THE PURPOSE OF INTERIM REVIEW UNDER THE
· 2			DRAWN ##### REVISED #####	STREAM RESTORATION	4055 International Plaza, Suite 200 Fort Worth, Texas 76109-4895	AUTHORITY OF: BRAD KIRKSEY P.E. TEXAS NO: 113006 ON DATE: 7/16/2019 IT IS NOT TO BE USED FOR CONSTRUCTION, BIDDING OR PERMIT PURPOSES.
	VERIFY SCALE Bar is one inch on original 0 1 drawing. If not one inch on this sheet, adjust scale.	FILE NAME F-2 INDEX	CHECKED #### SHEET.dwg	INDEX SHEET	Phone - (817) 735-7300 Web - www.freese.com	

Plot Date

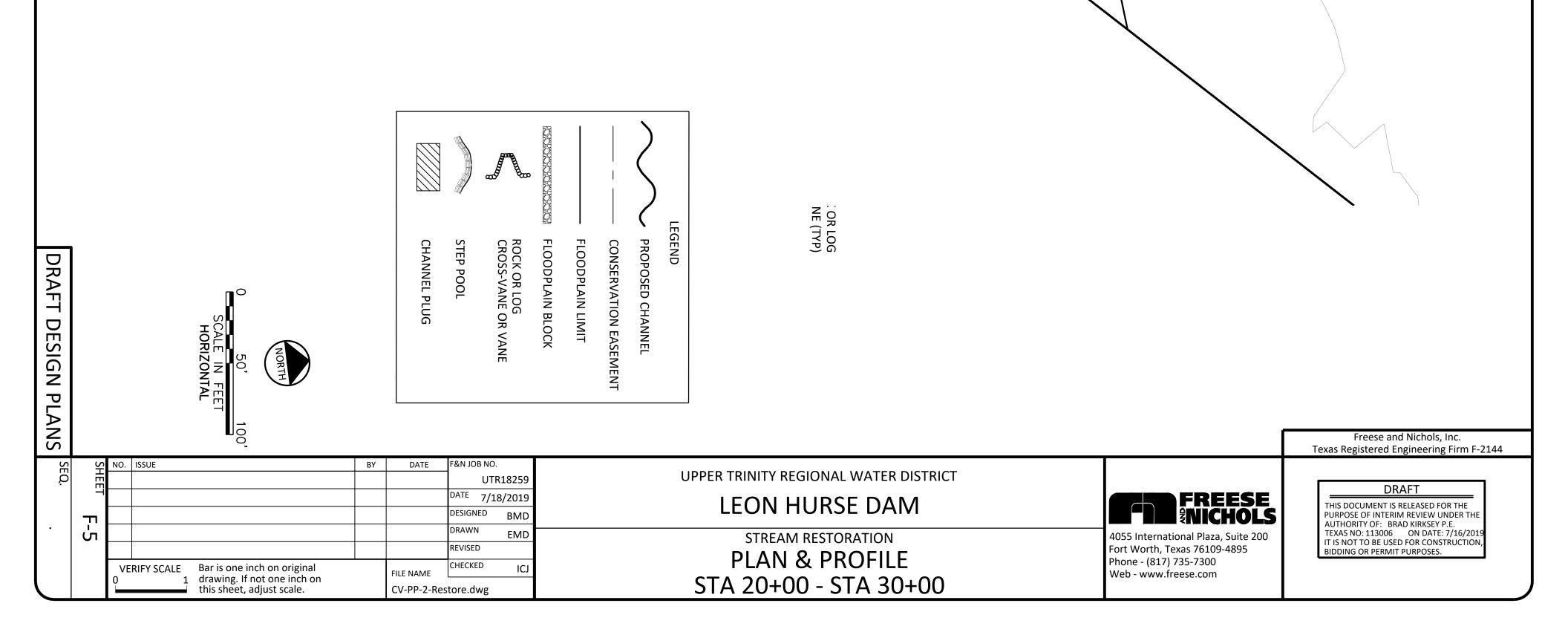
:15 PM

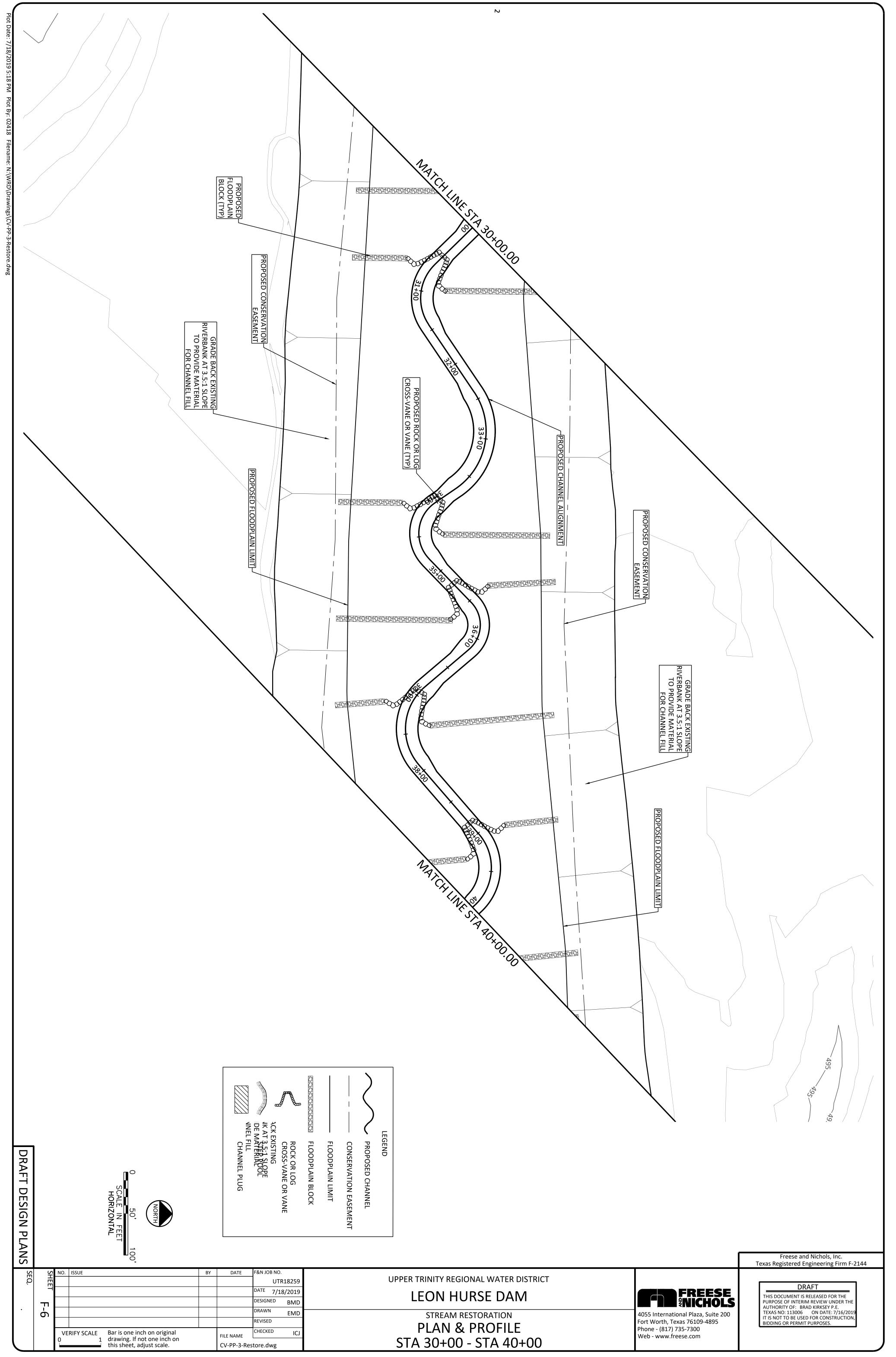

Plot ВY 20

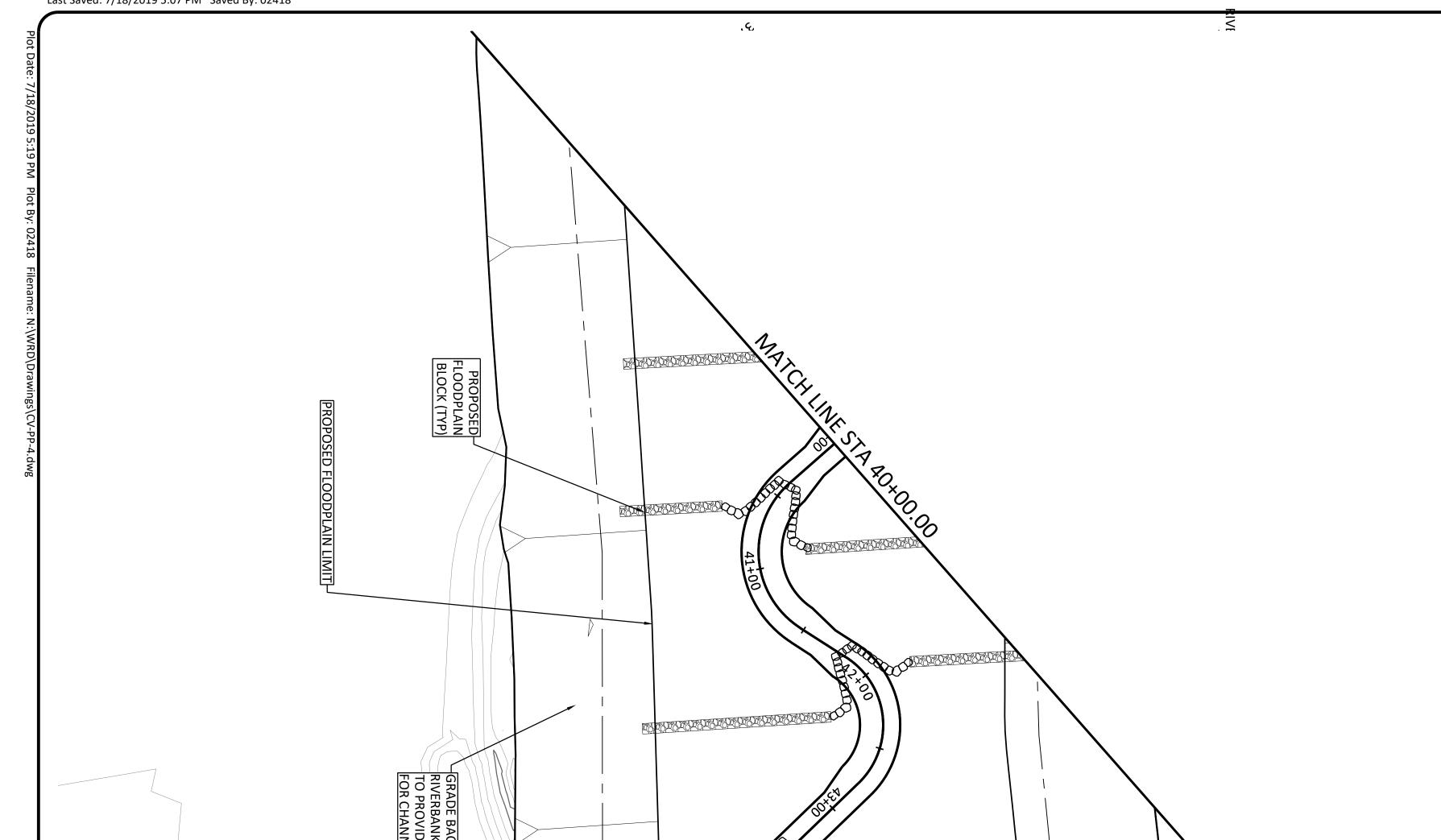
N:\WRD\Dr

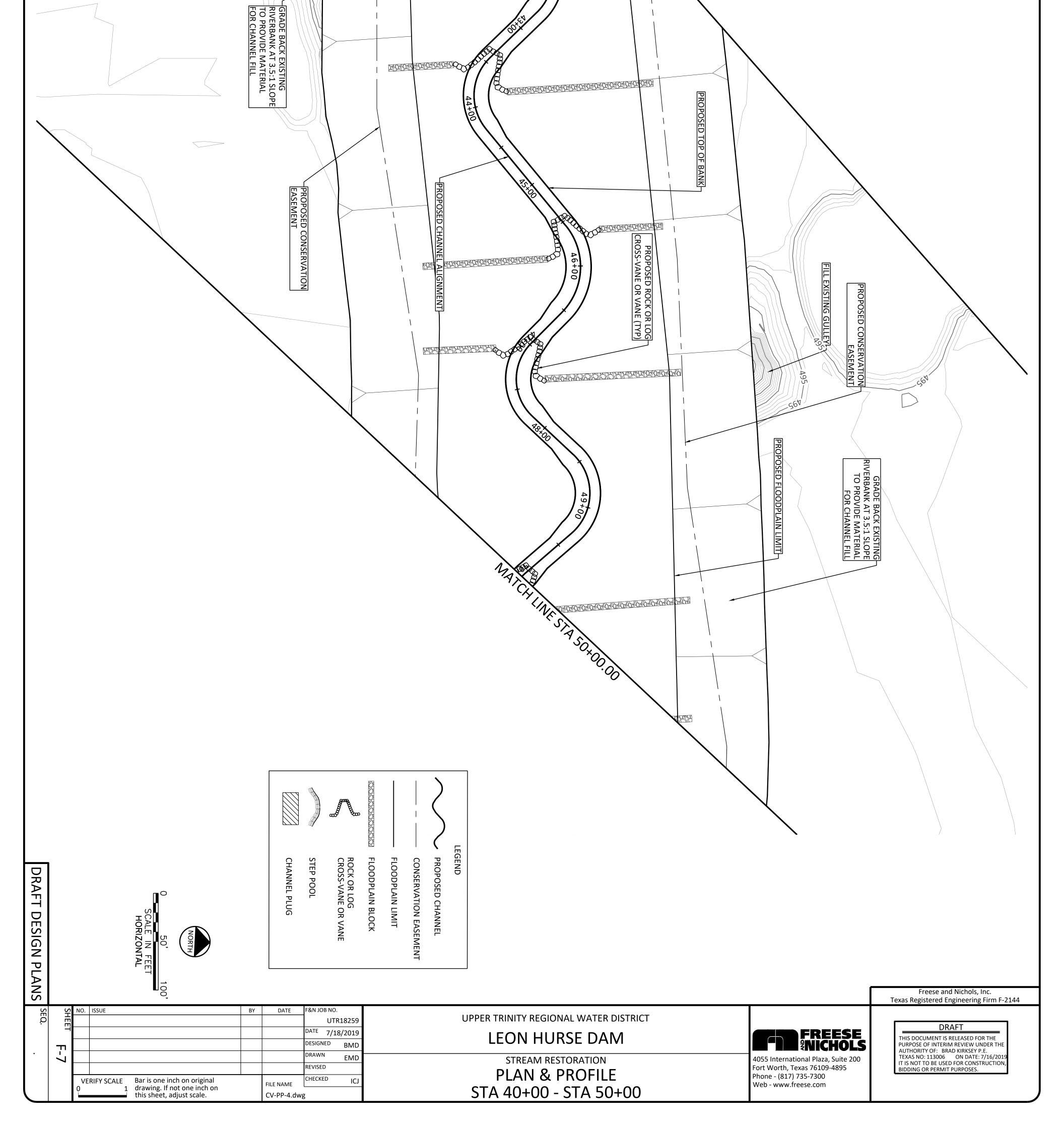


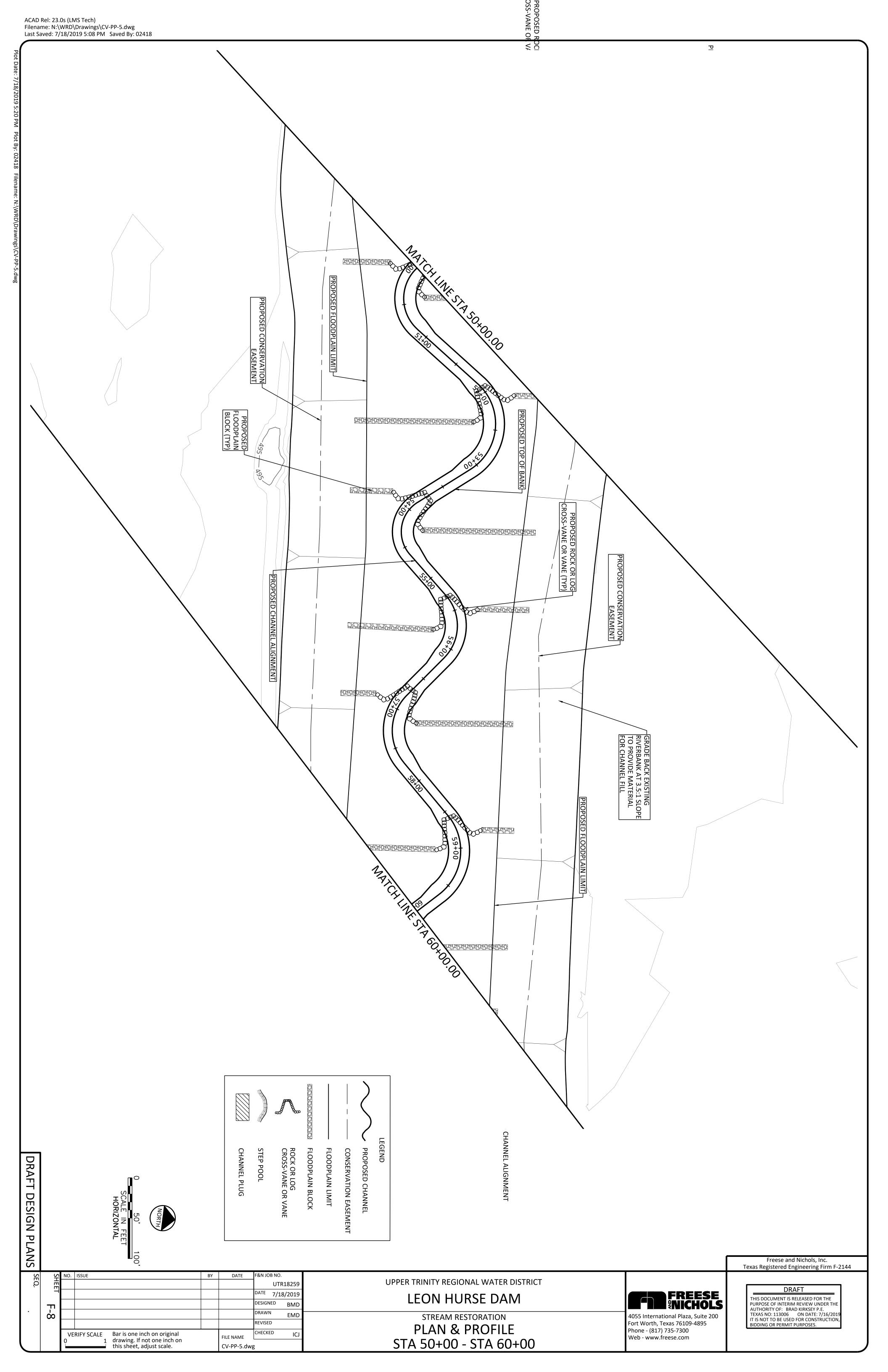
				HWY 904		
DRAFT DESIGN PLANS	0 400 SCALE IN FEET HORIZONTAL					
		BY DATE	F&N JOB NO.			Freese and Nichols, Inc. Texas Registered Engineering Firm F-2144
SHEET SEQ.	NO. ISSUE		UTR18259	UPPER TRINITY REGIONAL WATER DISTRICT		DRAFT
			DATE 7/18/2019 DESIGNED BMD	LEON HURSE DAM	FREESE NICHOLS	
			DESIGNED BMD			THIS DOCUMENT IS RELEASED FOR THE PURPOSE OF INTERIM REVIEW UNDER THE AUTHORITY OF: BRAD KIRKSEY P.E. TEXAS NO: 113006 ON DATE: 7/16/2019 IT IS NOT TO BE USED FOR CONSTRUCTION, BIDDING OR PERMIT PURPOSES.
ω			REVISED	STREAM RESTORATION	4055 International Plaza, Suite 200 Fort Worth, Texas 76109-4895	IT IS NOT TO BE USED FOR CONSTRUCTION, BIDDING OR PERMIT PURPOSES.
	VERIFY SCALE Bar is one inch on original 0 1 drawing. If not one inch on this sheet, adjust scale.	FILE NAME	CHECKED ICJ		Phone - (817) 735-7300 Web - www.freese.com	
	U <u>1</u> drawing. It not one inch on		EYMAP.dwg	OVERALL LAYOUT		

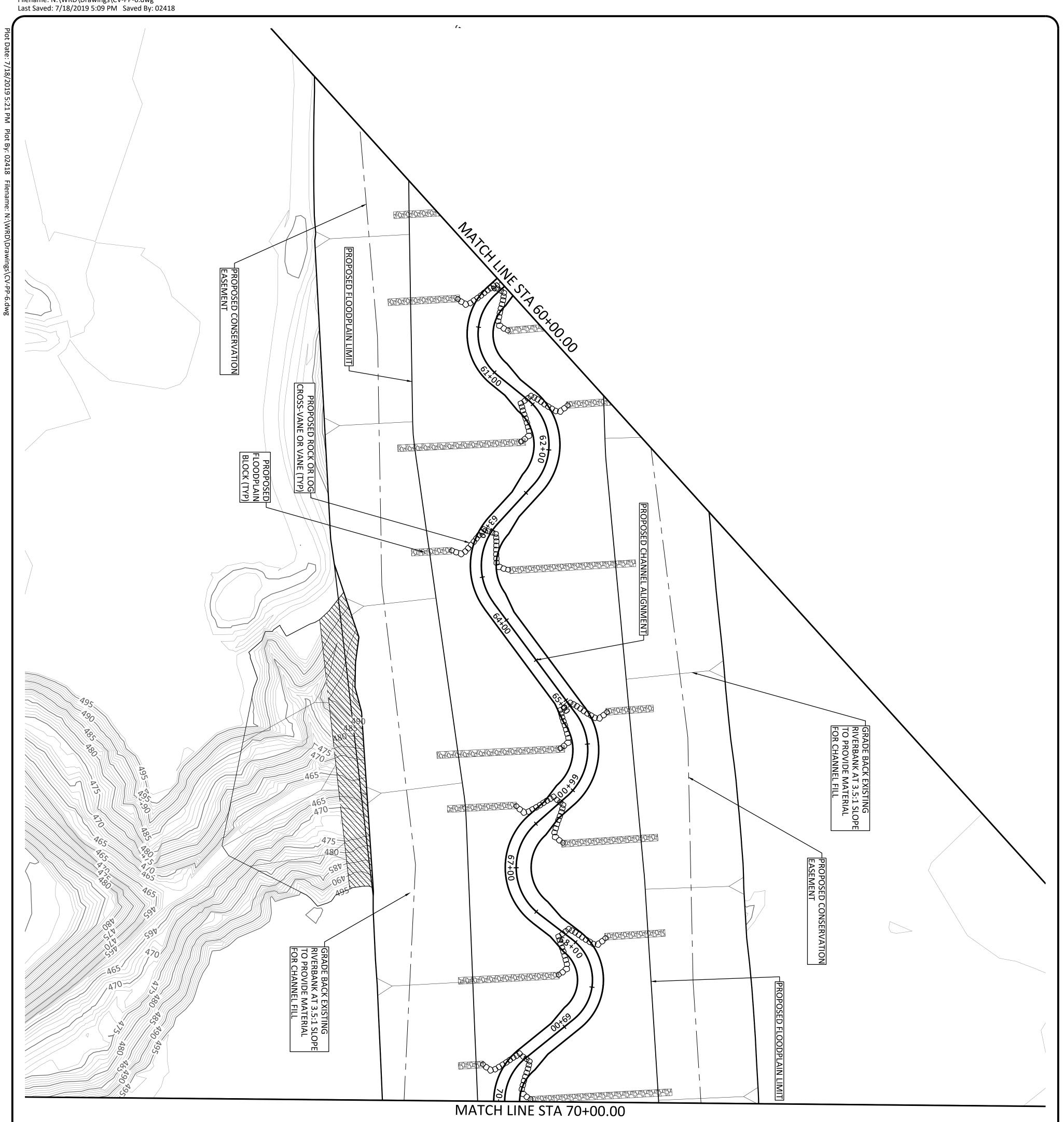

ACAD Rel: 23.0s (LMS Tech) Filename: N:\WRD\Drawings\CV-PP-1.dwg Last Saved: 7/18/2019 5:05 PM Saved By: 02418

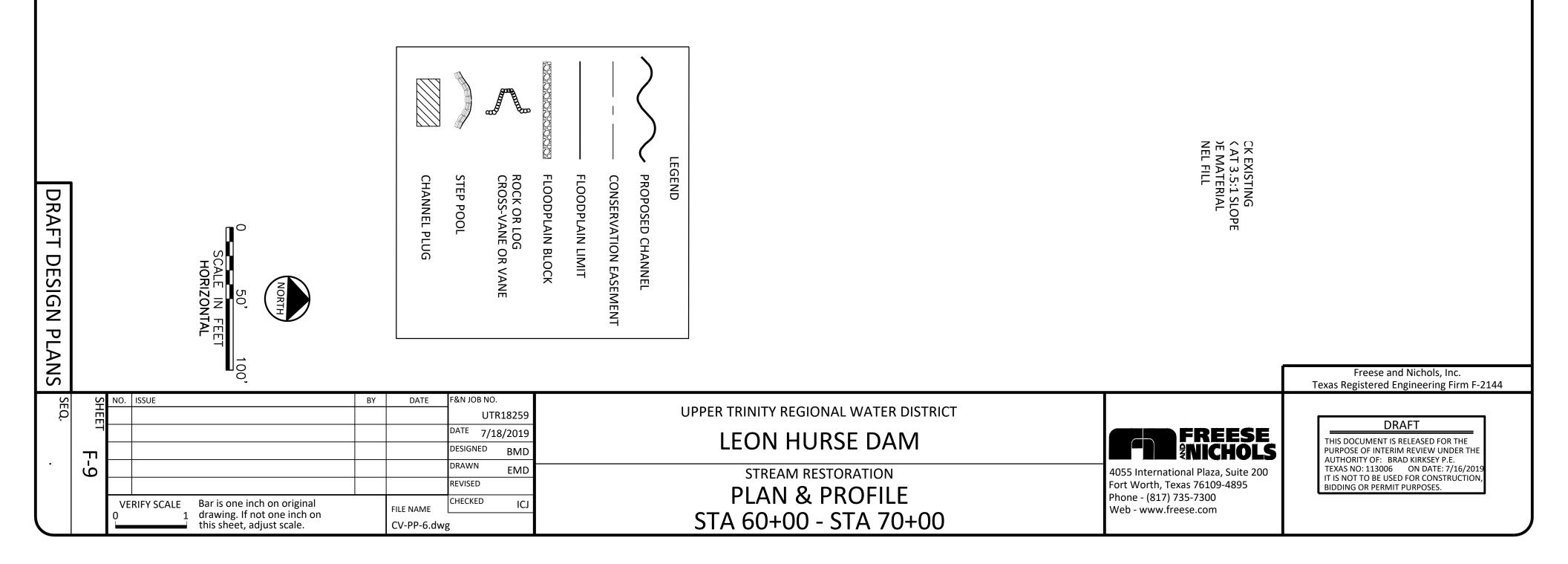

DRAFT DESIGN PLA	O 50' 1	Image: Note of the im	AIN LI		
ANS SEQ.		BY DATE F&N JOB NO.			Freese and Nichols, Inc. Texas Registered Engineering Firm F-2144
	F-4	UTR18259 DATE 7/18/2019 DESIGNED #### DRAWN #### REVISED ####	UPPER TRINITY REGIONAL WATER DISTRICT LEON HURSE DAM STREAM RESTORATION	4055 International Plaza, Suite 200 Fort Worth, Texas 76109-4895	DRAFT THIS DOCUMENT IS RELEASED FOR THE PURPOSE OF INTERIM REVIEW UNDER THE AUTHORITY OF: BRAD KIRKSEY P.E. TEXAS NO: 113006 ON DATE: 7/16/2019 IT IS NOT TO BE USED FOR CONSTRUCTION, BIDDING OR PERMIT PURPOSES.
	VERIFY SCALE 0 1 Were a constrained by the set of the s	FILE NAME CHECKED #### CV-PP-1.dwg	PLAN & PROFILE STA 10+00 - STA 20+00	Phone - (817) 735-7300 Web - www.freese.com	

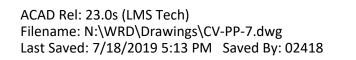


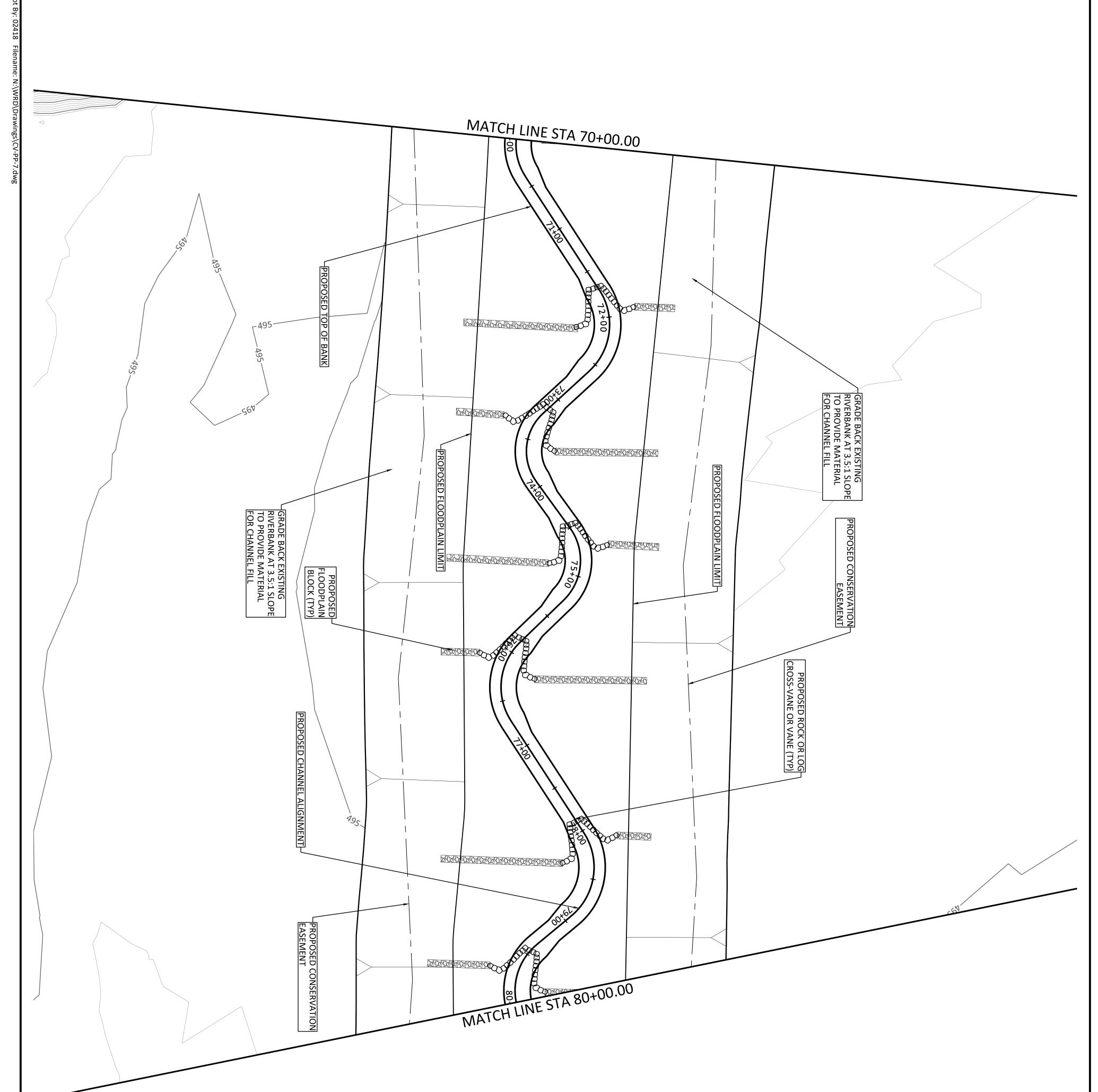




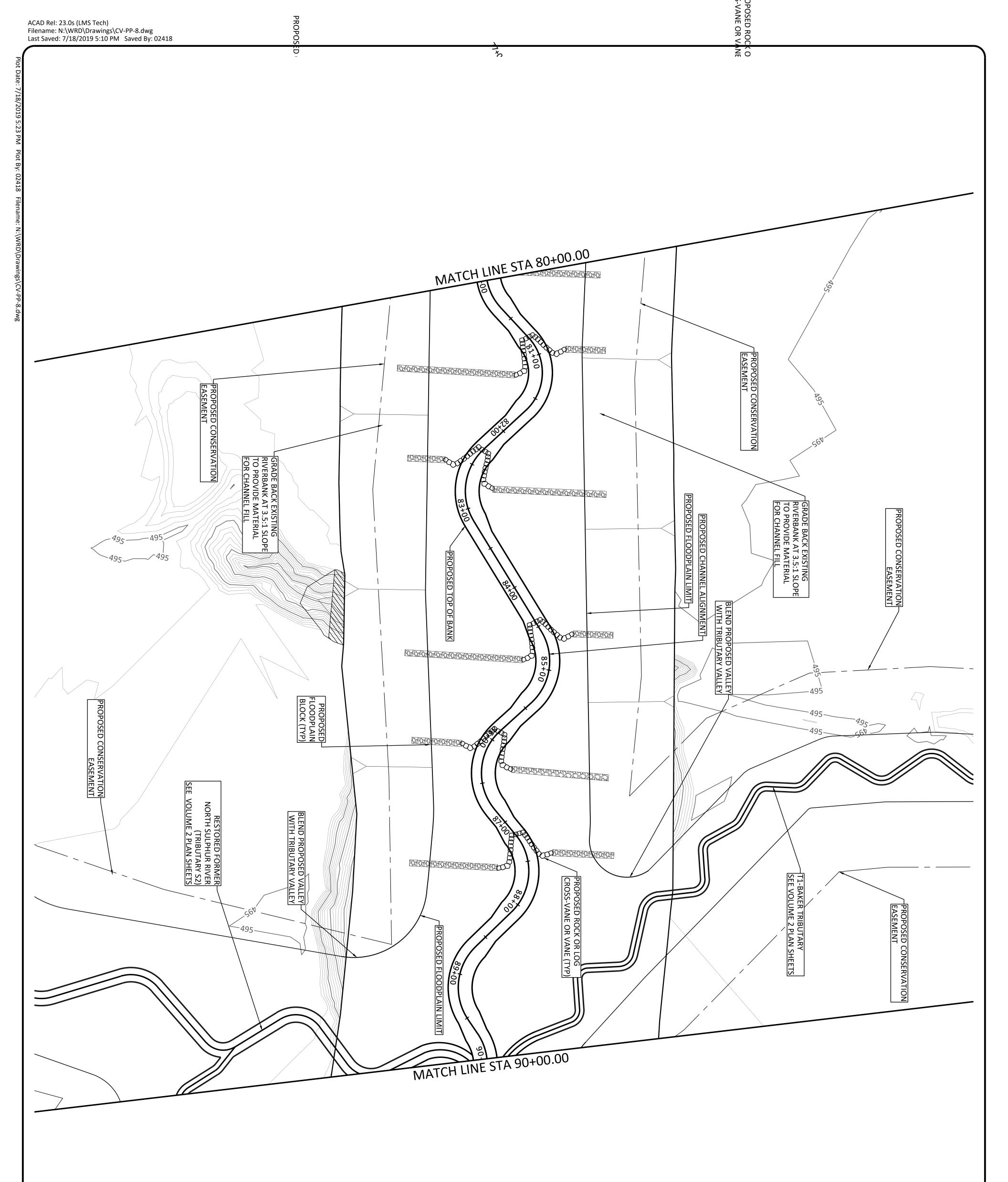

ACAD Rel: 23.0s (LMS Tech) Filename: N:\WRD\Drawings\CV-PP-3-Restore.dwg Last Saved: 7/18/2019 5:06 PM Saved By: 02418

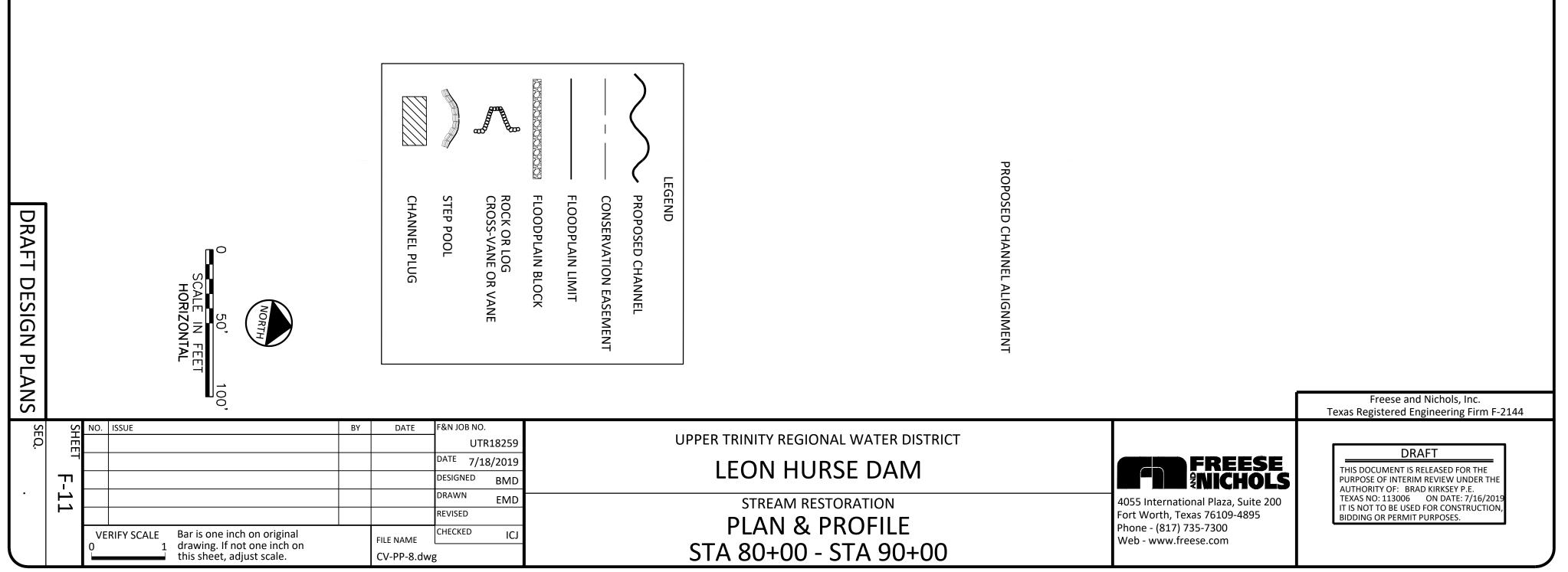


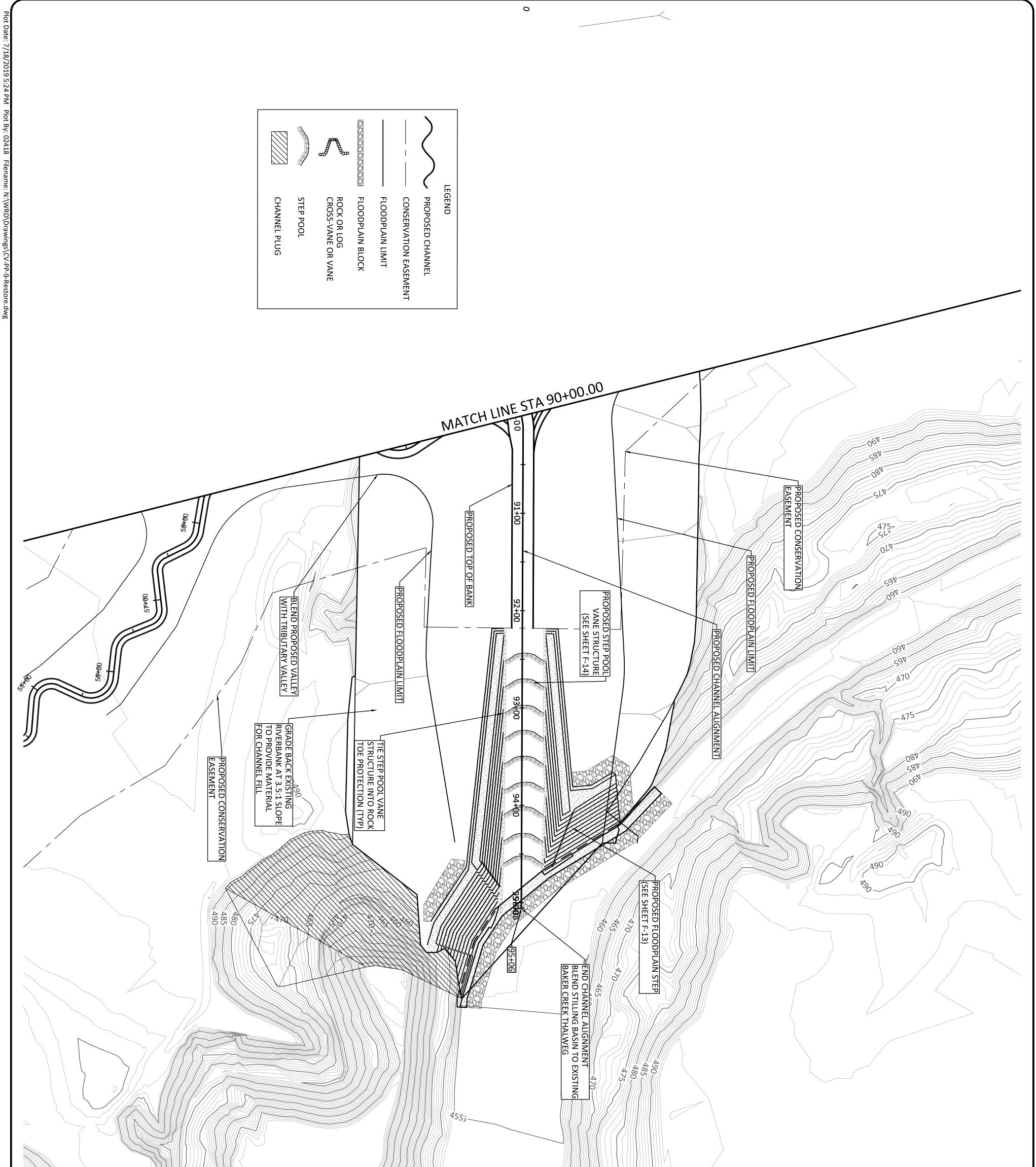




ACAD Rel: 23.0s (LMS Tech) Filename: N:\WRD\Drawings\CV-PP-6.dwg Last Saved: 7/18/2019 5:09 PM Saved By: 02418

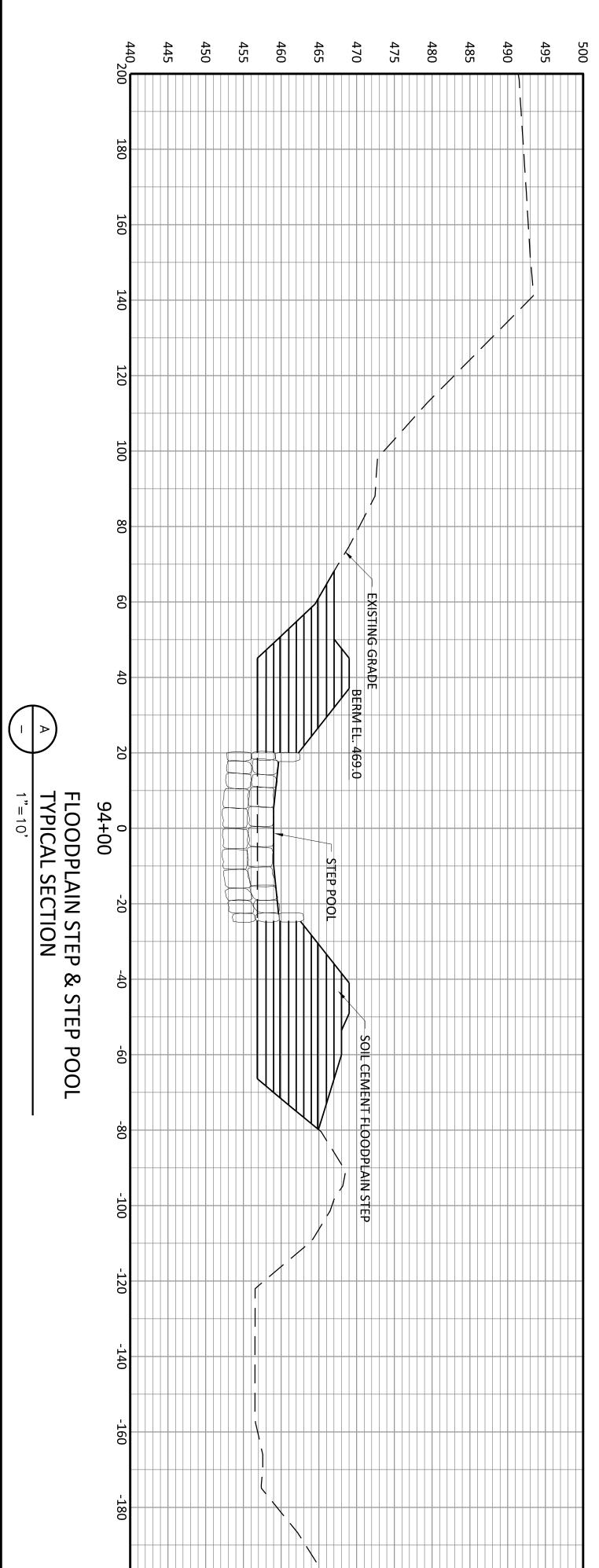


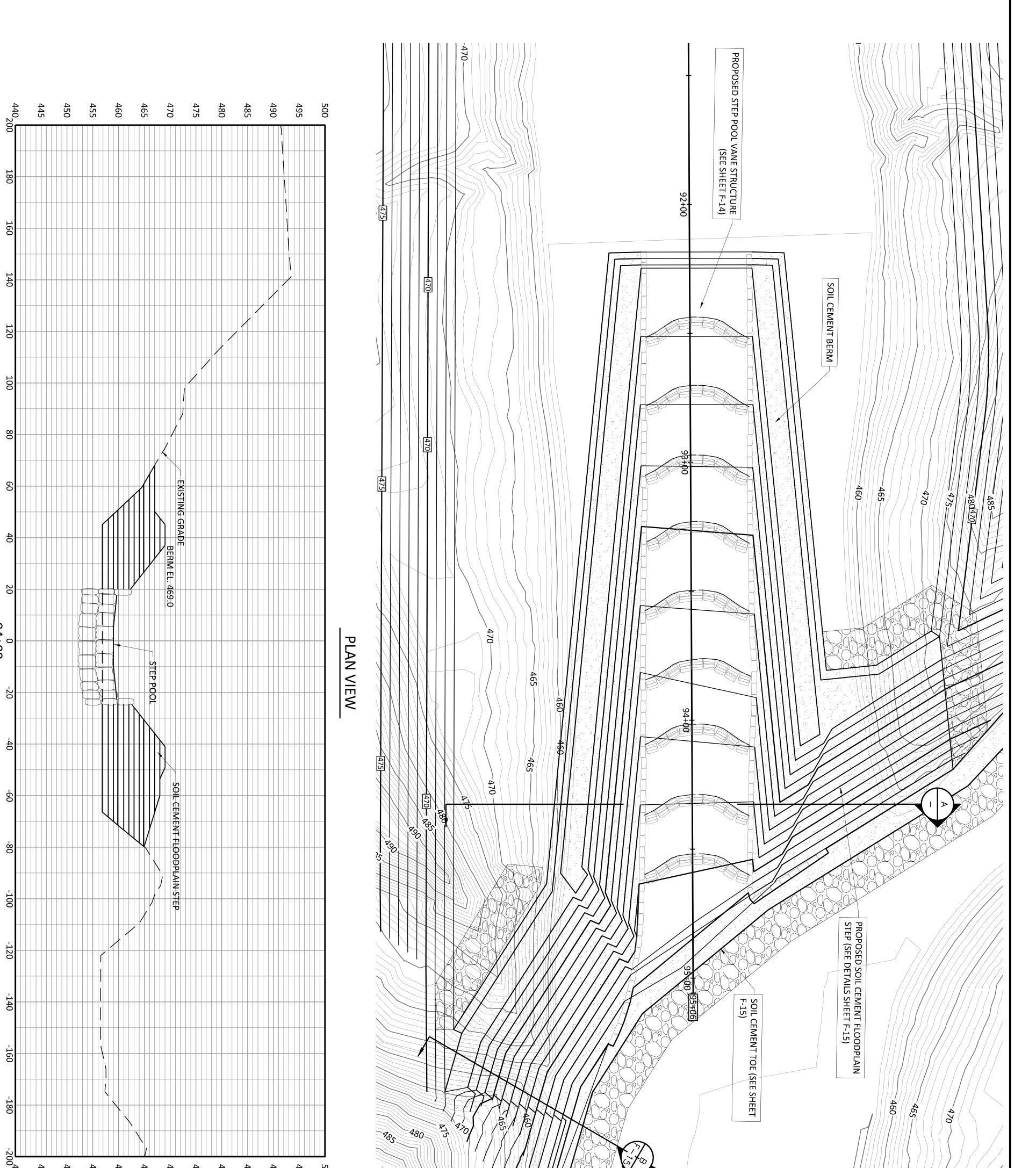




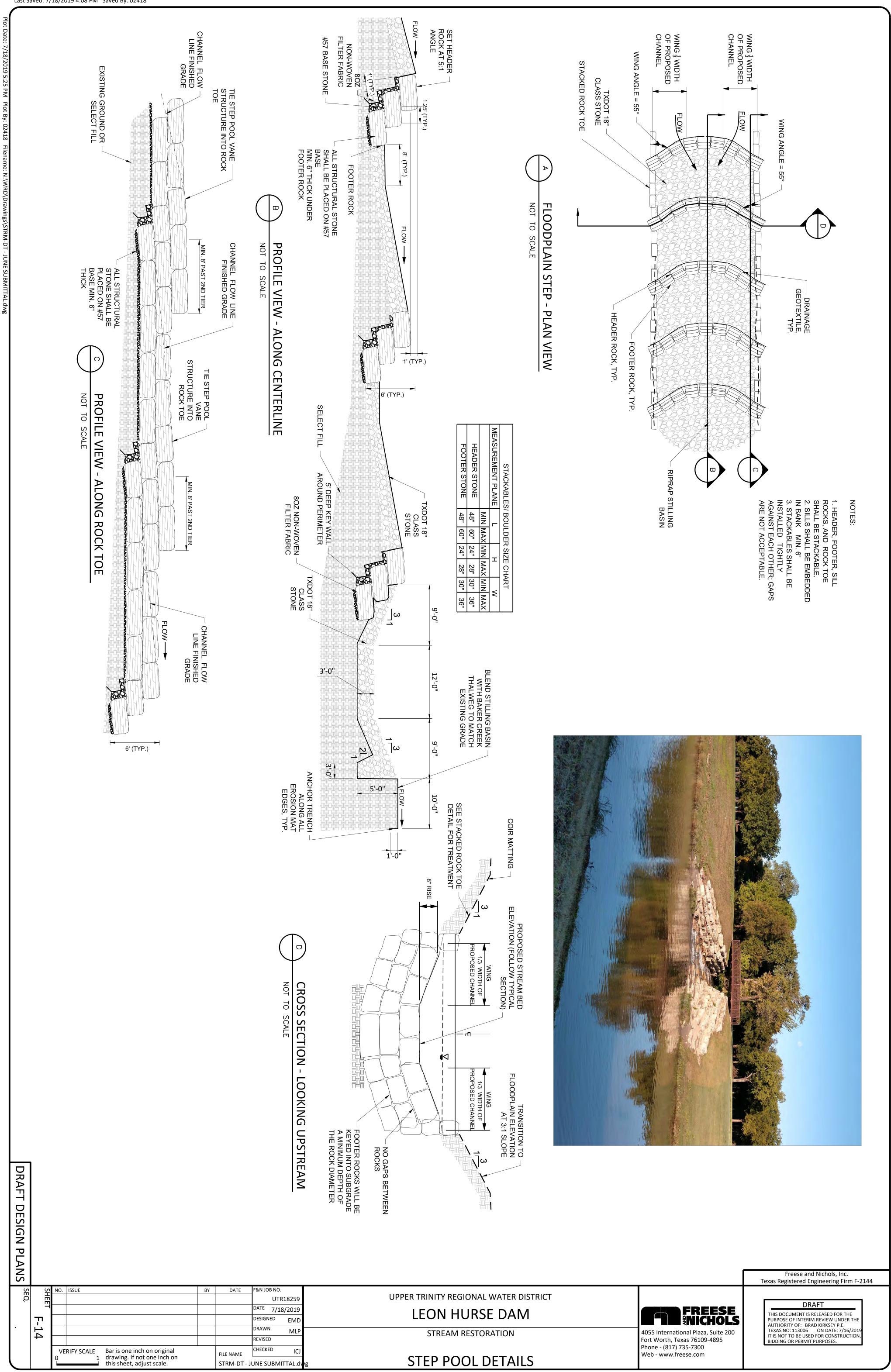
-

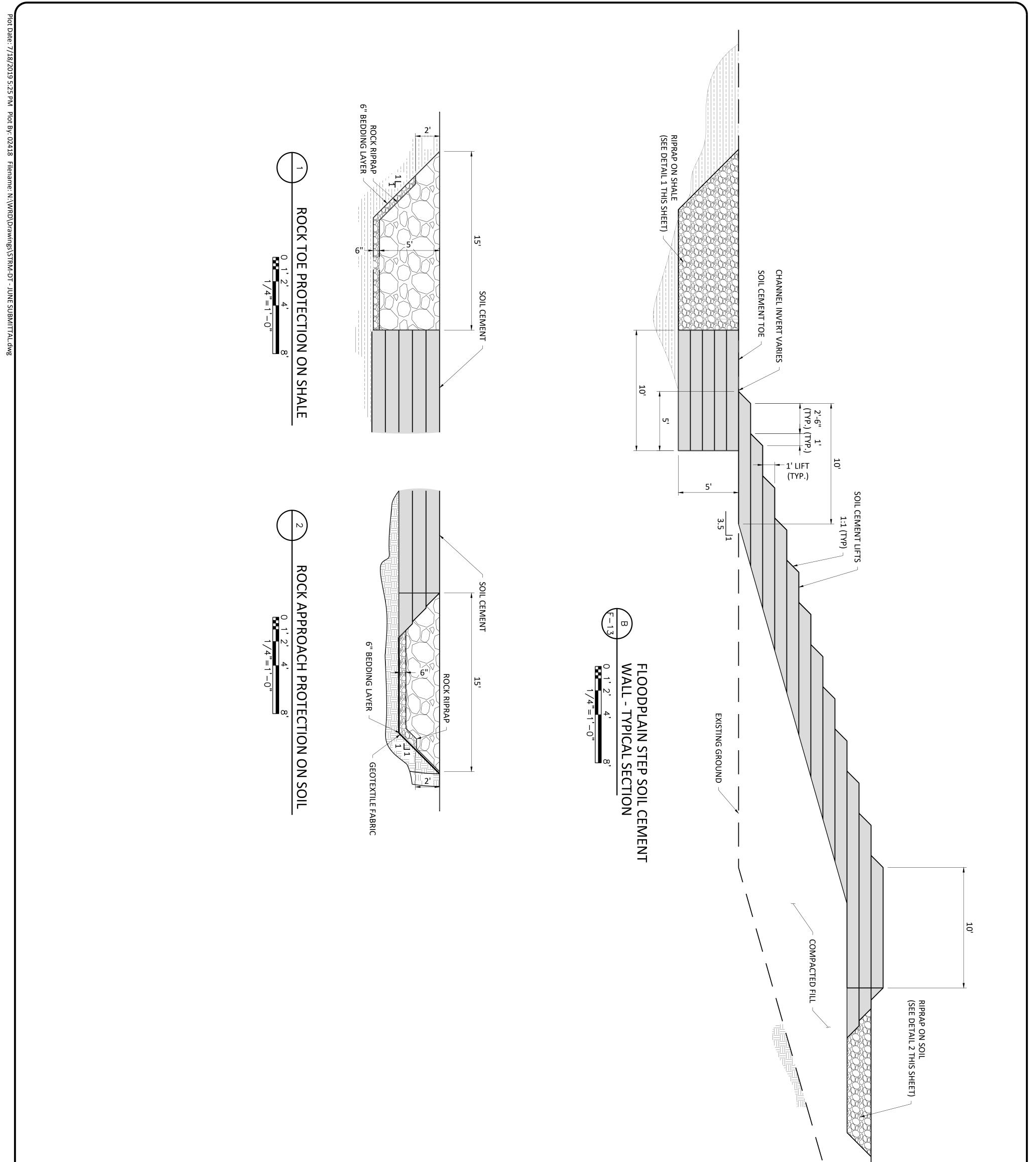
DRAFT DESIGN PLANS	O 50' 100 SCALE IN FEET HORIZONTAL	A LOG ANE OR V, OL	3 LEGEND PROPOSED CHANNEL CONSERVATION EASEMENT FLOODPLAIN LIMIT	ADE BACK EXISTING 'ERBANK AT 3.5:1 SLOPE PROVIDE MATERIAL R CHANNEL FILL	ROPOSED CONSERVATION Freese and Nichols, Inc.
S	∽ NO. ISSUE	BY DATE F&N JOB NO.			Texas Registered Engineering Firm F-2144
ËQ.		UTR18259 DATE 7/18/2019	UPPER TRINITY REGIONAL WATER DISTRICT	FREESE	DRAFT THIS DOCUMENT IS RELEASED FOR THE
		DESIGNED BMD			PURPOSE OF INTERIM REVIEW UNDER THE AUTHORITY OF: BRAD KIRKSEY P.E.
	10	REVISED	STREAM RESTORATION	4055 International Plaza, Suite 200 Fort Worth, Texas 76109-4895	TEXAS NO: 113006 ON DATE: 7/16/2019 IT IS NOT TO BE USED FOR CONSTRUCTION, BIDDING OR PERMIT PURPOSES.
	VERIFY SCALE Bar is one inch on original	FILE NAME CHECKED ICJ	PLAN & PROFILE	Phone - (817) 735-7300 Web - www.freese.com	Sidding on Fernin Fon Odes.
	0 1 drawing. If not one inch on this sheet, adjust scale.	CV-PP-7.dwg	STA 70+00 - STA 80+00	Web www.incese.com)





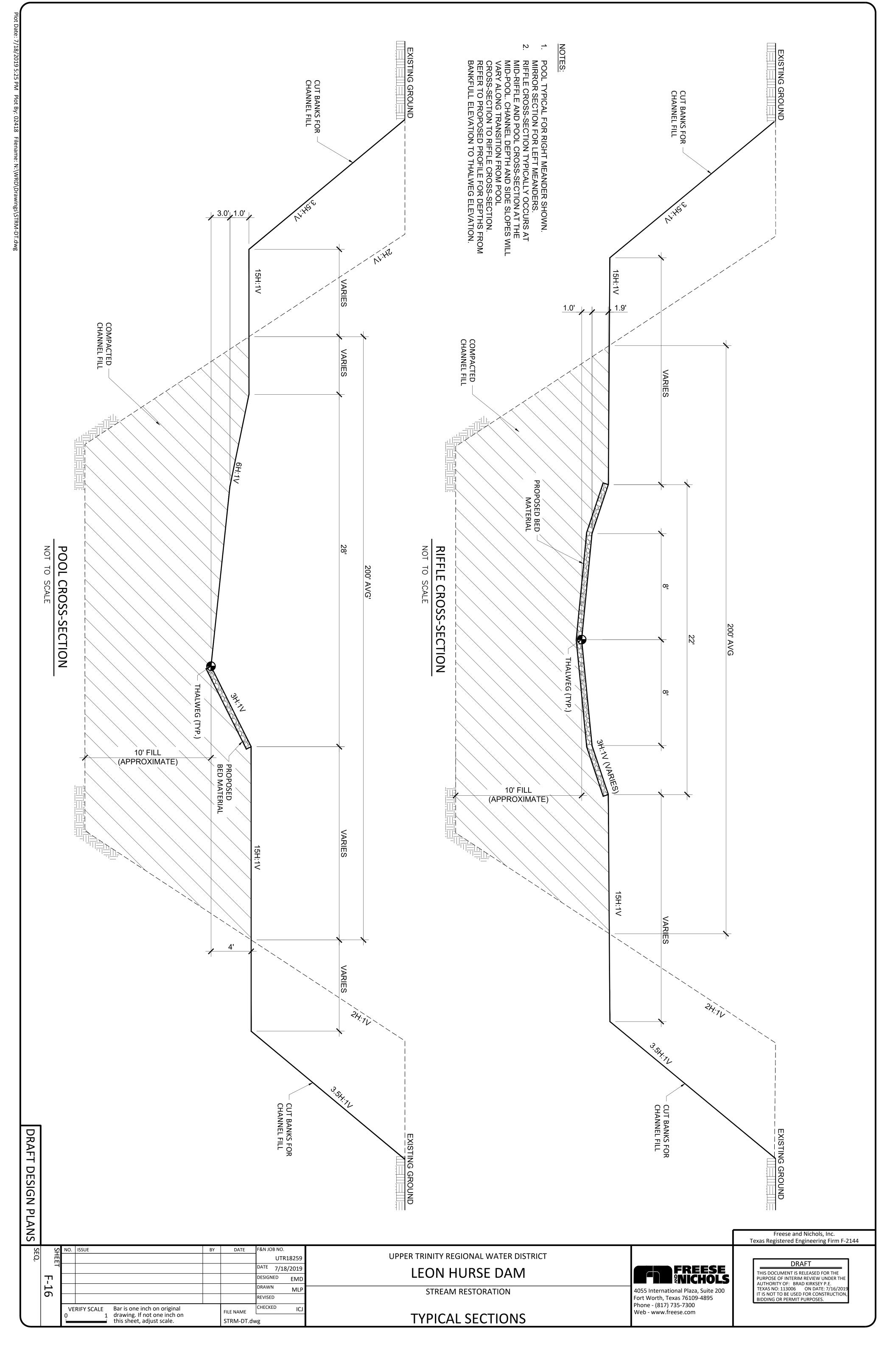
DRAFT DESIGN PLANS	0 50' 100' SCALE IN FEET HORIZONTAL					Freese and Nichols, Inc. Texas Registered Engineering Firm F-2144
	NO. ISSUE BY	DATE F&N JOB NO. UTR18259 DATE 7/18/2019 DESIGNED BMD		ITY REGIONAL WATER DISTRICT	FREESE NICHOLS	DRAFT THIS DOCUMENT IS RELEASED FOR THE PURPOSE OF INTERIM REVIEW UNDER THE AUTHORITY OF: BRAD KIRKSEY P.E.
. 12	VERIFY SCALE Bar is one inch on original 0 1 drawing. If not one inch on this sheet, adjust scale.	DRAWN EMD REVISED REVISED FILE NAME CHECKED ICJ CV-PP-9-Restore.dwg ICD	PL	TREAM RESTORATION AN & PROFILE 0+00 - STA 95+15	4055 International Plaza, Suite 200 Fort Worth, Texas 76109-4895 Phone - (817) 735-7300 Web - www.freese.com	AUTHORITY OF: BRAD KIRKSEY P.E. TEXAS NO: 113006 ON DATE: 7/16/2019 IT IS NOT TO BE USED FOR CONSTRUCTION, BIDDING OR PERMIT PURPOSES.



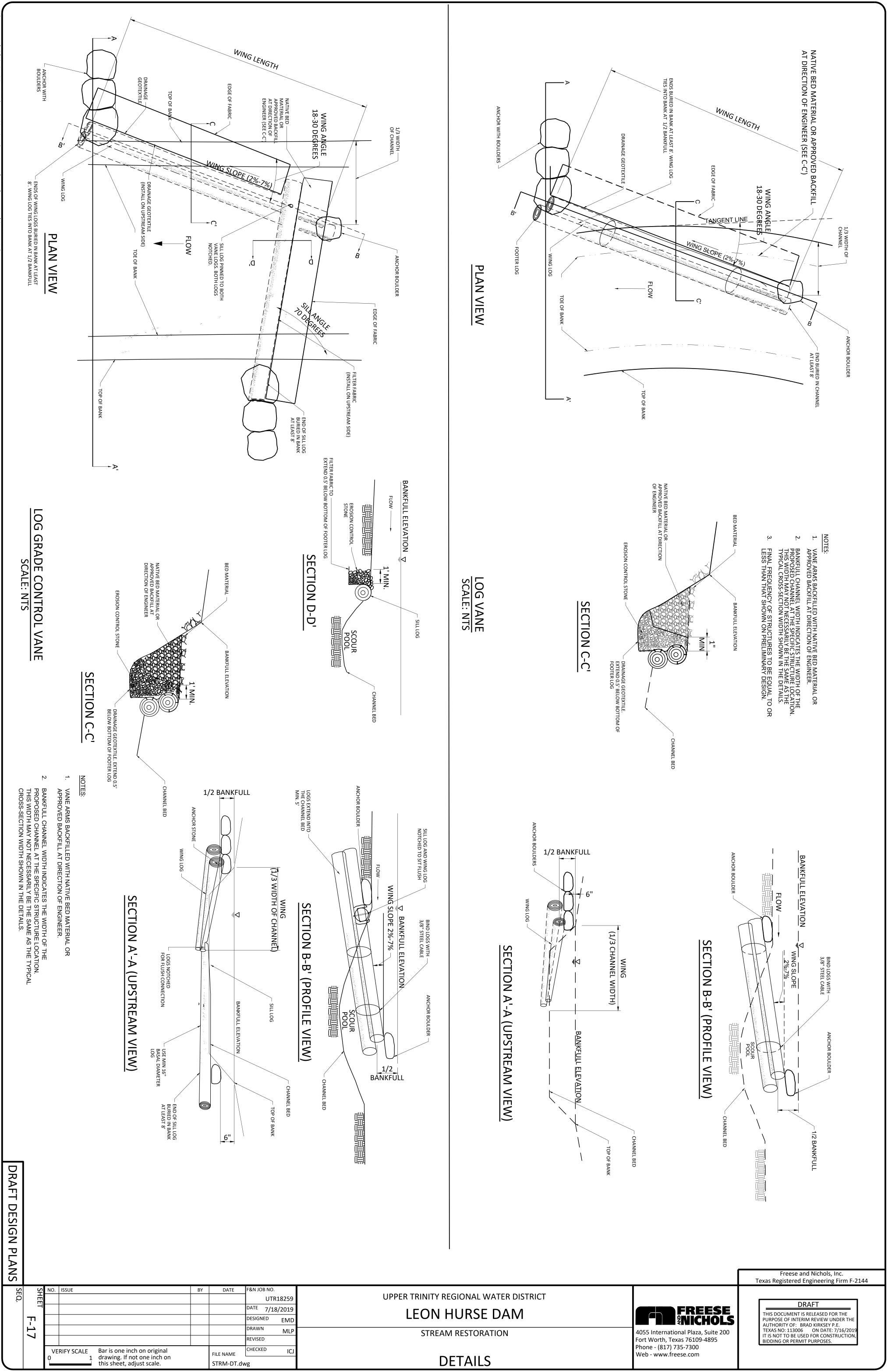


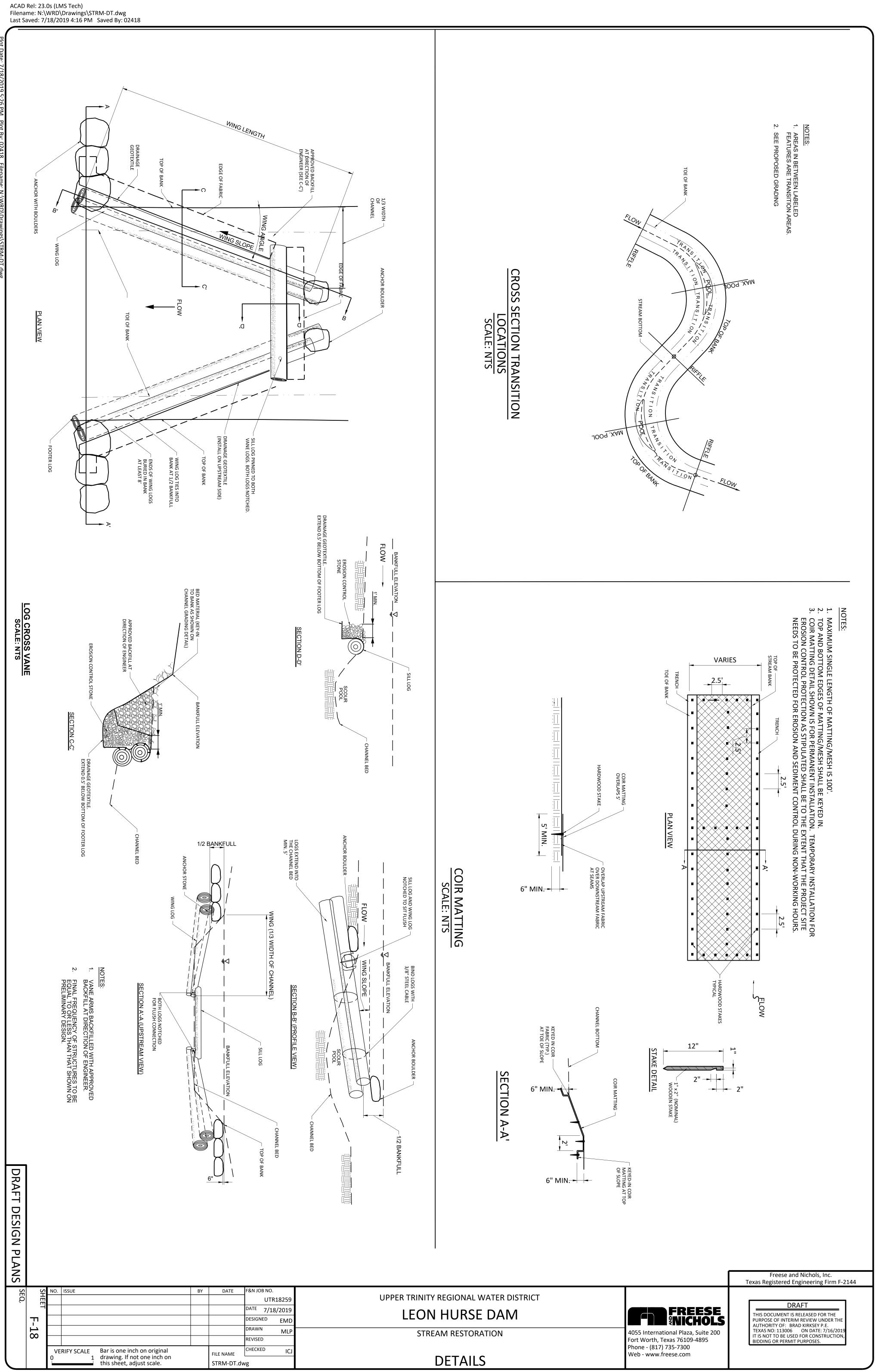
PLAN VIEW

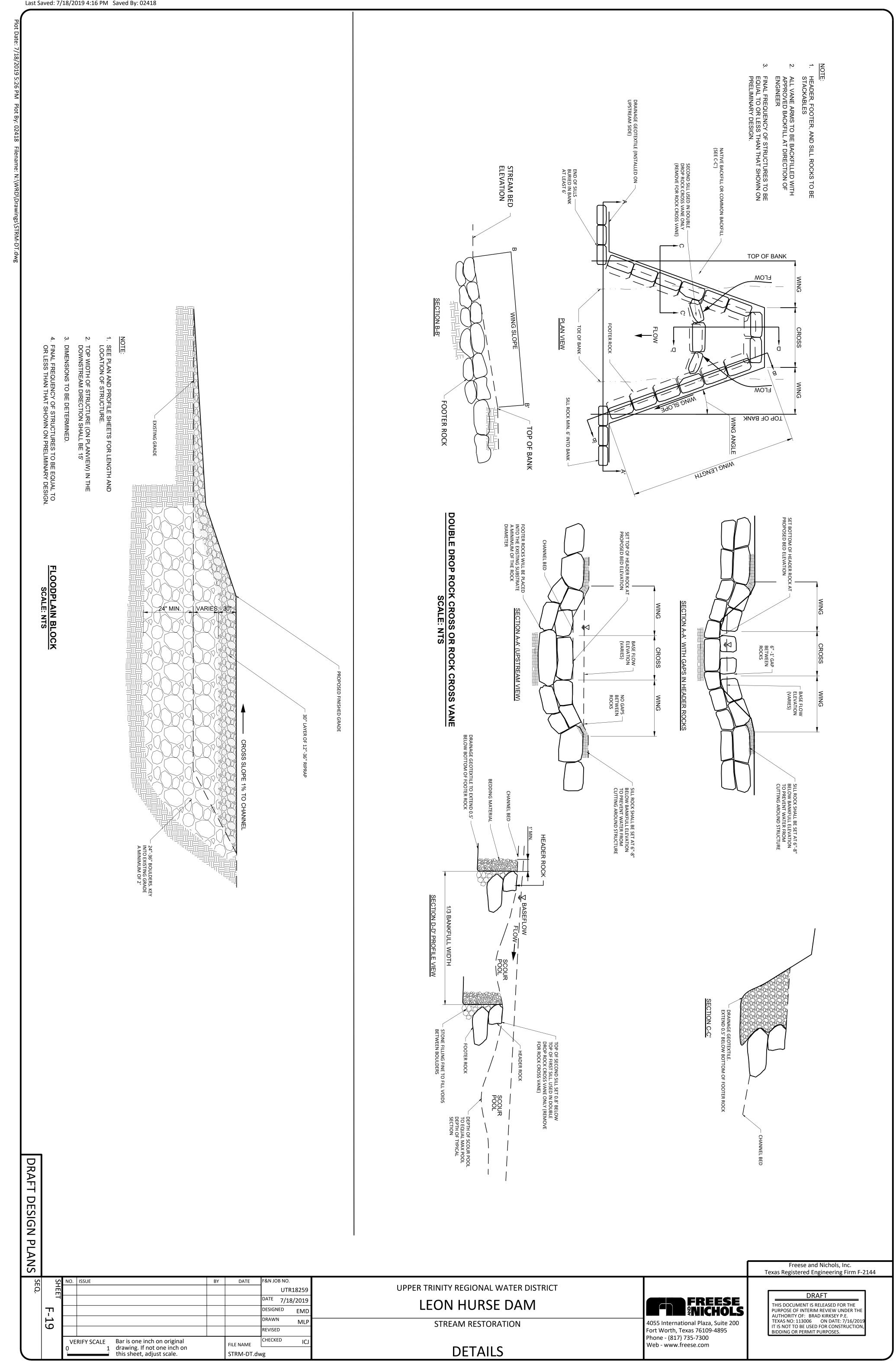
00440	460 455 450 445	475 470	490 485 480	500 495			
SCALE IN FEET HORIZONTAL 10' SCALE IN FEET VERTICAL	0 20' 40'						NORTH
AND. ISSUE	<u> </u>	BY DATE	F&N JOB NO. UTR18259		UPPER TRINITY REGIONAL WATER DISTRICT		Freese and Nichols, Inc. Texas Registered Engineering Firm F-2144
			DATE 7/18/2019 DESIGNED NO		LEON HURSE DAM	FREESE INICHOLS	DRAFT THIS DOCUMENT IS RELEASED FOR THE PURPOSE OF INTERIM REVIEW UNDER THE AUTHORITY OF: BRAD KIRKSEY P.E.
	Bar is one inch on original drawing. If not one inch on this sheet, adjust scale.	FILE NAME CV-PP-FP-	DRAWN NO REVISED . CHECKED WEH STEP.dwg		STREAM RESTORATION FLOODPLAIN STEP PLAN & SECTION VIEW	4055 International Plaza, Suite 200 Fort Worth, Texas 76109-4895 Phone - (817) 735-7300 Web - www.freese.com	AUTHORITY OF: BRAD KIRKSEY P.E. TEXAS NO: 113006 ON DATE: 7/16/2019 IT IS NOT TO BE USED FOR CONSTRUCTION, BIDDING OR PERMIT PURPOSES.

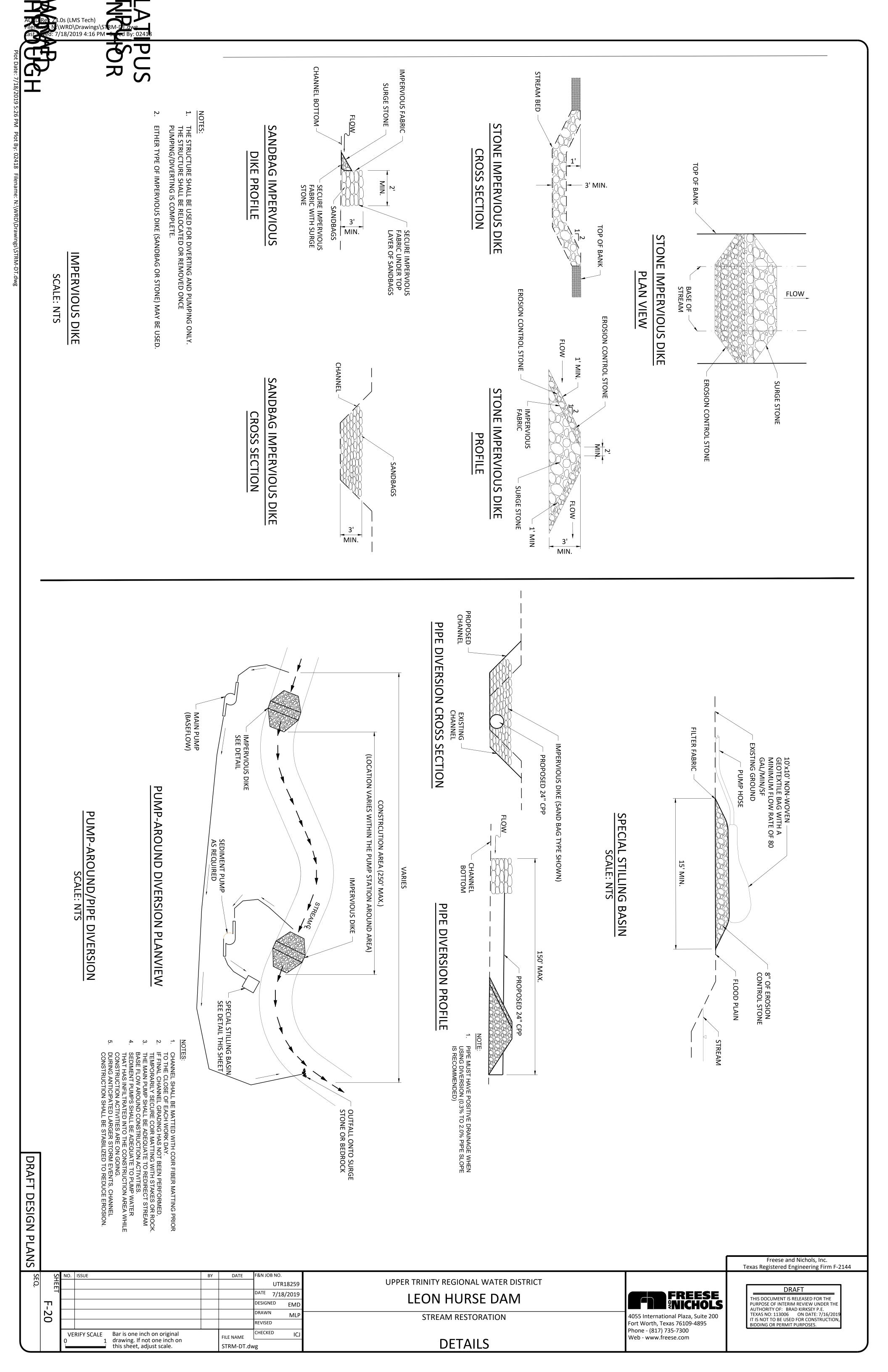


ACAD Rel: 23.0s (LMS Tech) Filename: N:\WRD\Drawings\STRM-DT - JUNE SUBMITTAL.dwg Last Saved: 7/18/2019 4:08 PM Saved By: 02418

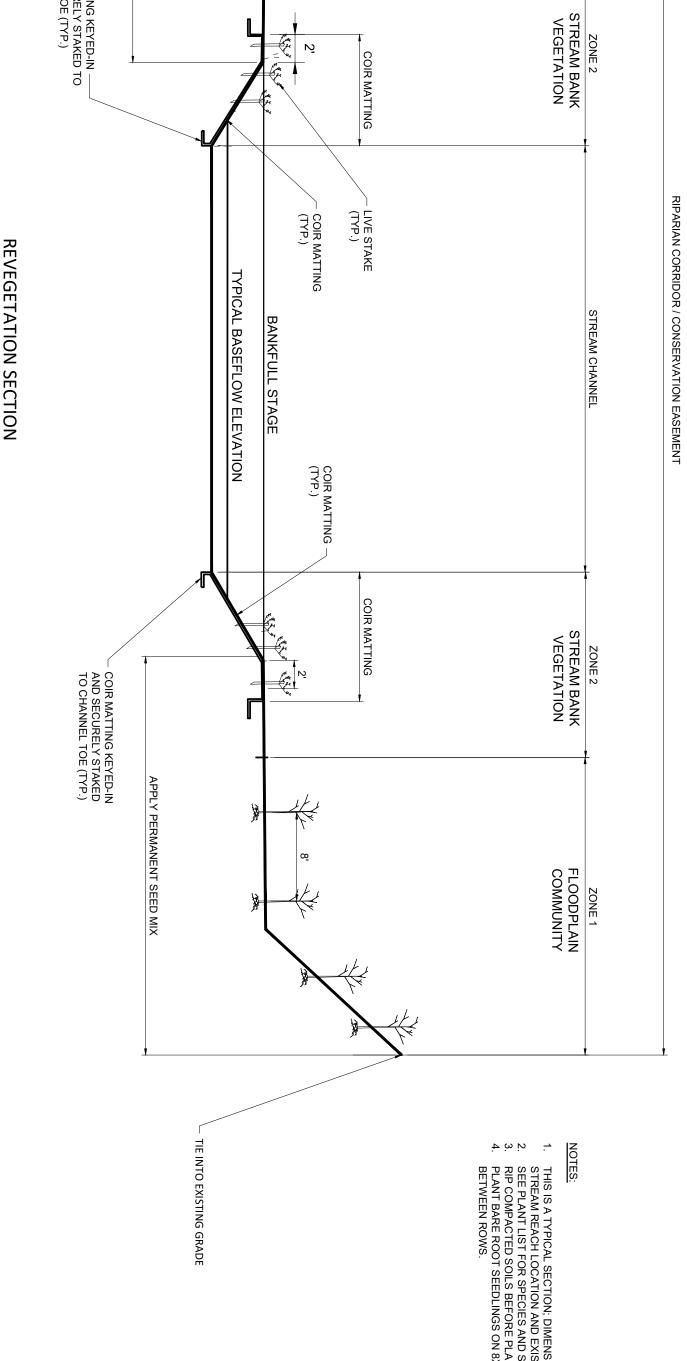



Ì						\mathbf{N}
						I
					_	
					[Freese and Nichols, Inc. Texas Registered Engineering Firm F
SHE	NO. ISSUE BY	DATE F&N JO	ов NO. UTR18259	UPPER TRINITY REGIONAL WATER DISTRICT		Texas Registered Engineering Firm F
SHEET	NO. ISSUE BY	DATE F&N JO DATE DATE	UTR18259			Texas Registered Engineering Firm F
	NO. ISSUE BY		UTR18259 7/18/2019	UPPER TRINITY REGIONAL WATER DISTRICT LEON HURSE DAM	FREESE NICHOLS	Texas Registered Engineering Firm F
iEET F-1	NO. ISSUE BY	DATE	UTR18259 7/18/2019 ^{NED} EMD	LEON HURSE DAM	4055 International Plaza, Suite 200	Texas Registered Engineering Firm F
IEET	NO. ISSUE BY Image: Solution of the second	DATE DESIG	UTR18259 7/18/2019 ^{NED} EMD ^{/N} MPT		4055 International Plaza, Suite 200 Fort Worth, Texas 76109-4895	Texas Registered Engineering Firm F
SHEET F-15		DATE DESIGI DRAW	UTR18259 7/18/2019 ^{INED} EMD ^{/N} MPT ED	LEON HURSE DAM	4055 International Plaza, Suite 200	Texas Registered Engineering Firm F DRAFT THIS DOCUMENT IS RELEASED FOR THE PURPOSE OF INTERIM REVIEW UNDER TH AUTHORITY OF: BRAD KIRKSEY P.E. TEXAS NO: 113006 ON DATE: 7/16/20 IT IS NOT TO BE USED FOR CONSTRUCTIO


FINAL GRADE



ACAD Rel: 23.0s (LMS Tech) Filename: N:\WRD\Drawings\STRM-DT.dwg Last Saved: 7/18/2019 4:16 PM Saved By: 02418



																								TIE TO EXISTING GRADE
		ZONE 1-2 PERMANENT SEED MIX			SHRUBS	ZONE 2 STREAM BANK VEGETATION	TREES					SHRUBS			VEGETATION	ZONE 1			TEEC				SEEDING DATES	APPLY PERMANENT SEED MIX APPLY PERMANENT SEED MIX OIR MATT AND SECUT CHANNEL T CHANNEL T
	Carex cherokeensis	Elymus virginicus	Chasmanthium latfolium	Cephalanthus occidentalis	Comus drummondii	Plantus occidentalis	Acer negundo	Salix nigra	Amorpha fruticosa	Cephalanthus occidentalis	Comus drummondii	Calicarpa americana	llex decidua	Symphoricarpos orbiculatus	Plantus occidentalis	Celtis laevigata	Fraxinus pennsylvanica	Ulmus crassifolia	Carya illinoinesis	Quercus shumardii	Quercus nigra	Populus deltoides	SCIENTIFIC NAME	COIR MATTING X AND SECURELY STAKED TO CHANNEL TOE (TYP.)
PLANTING PLAN	Cherokee Sedge	Virginia Wildrye	Inland Sea Oats	Common Buttonbush	Roughleaf Dogwood	Sycamore	Box Elder	Black Willow	Indigo Bush	Common Buttonbush	Roughleaf Dogwood	American Beautyberry	Deciduous Holly	Corral Berry	Sycamore*	Sugarberry	Green Ash	Cedar Elm	Pecan	Shumard Oak	Water Oak	Eastern Cottonwood*	COMMON NAME LS	COR MATTING (TYP.) BANKFULL STAGE TYPICAL BASEFLOW ELEVATION TYPICAL BASEFLOW ELEVATION SCALE: NTS SCALE: NTS
																			BE DETERMINED	FINAL SPECIES LIST AND			BR B&B	ATION (TYP.)
																							*	COIR MATTING

LANTING PLAN SCALE: NTS

ZONE 1 FLOODPLAIN COMMUNITY

					ACING, STAGER ACING, STAGER Freese and Nichols, Inc.
					Texas Registered Engineering Firm F
_	NO. ISSUE BY	DATE F&N JOB NO. UTR18259	UPPER TRINITY REGIONAL WATER DISTRICT		
		UTR18259 DATE 7/18/2019		FREESE	DRAFT THIS DOCUMENT IS RELEASED FOR THE
		UTR18259 DATE 7/18/2019 DESIGNED EMD	UPPER TRINITY REGIONAL WATER DISTRICT LEON HURSE DAM	FREESE NICHOLS	THIS DOCUMENT IS RELEASED FOR THE PURPOSE OF INTERIM REVIEW UNDER TH
F-2		UTR18259 DATE 7/18/2019 DESIGNED EMD DRAWN MLP		4055 International Plaza, Suite 200	THIS DOCUMENT IS RELEASED FOR THE PURPOSE OF INTERIM REVIEW UNDER TH AUTHORITY OF: BRAD KIRKSEY P.E. TEXAS NO: 113006 ON DATE: 7/16/20 IT IS NOT TO BE USED FOR CONSTRUCTIO
_		UTR18259 DATE 7/18/2019 DESIGNED EMD	LEON HURSE DAM		THIS DOCUMENT IS RELEASED FOR THE

UPPER TRINITY REGIONAL WATER DISTRICT

REGIONAL WATER DISTRICT

ECOSYSTEM

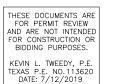
PLANNING &

RESTORATION

TEXAS REGISTERED ENGINEERING FIRM F-14997

UPPER TRINITY

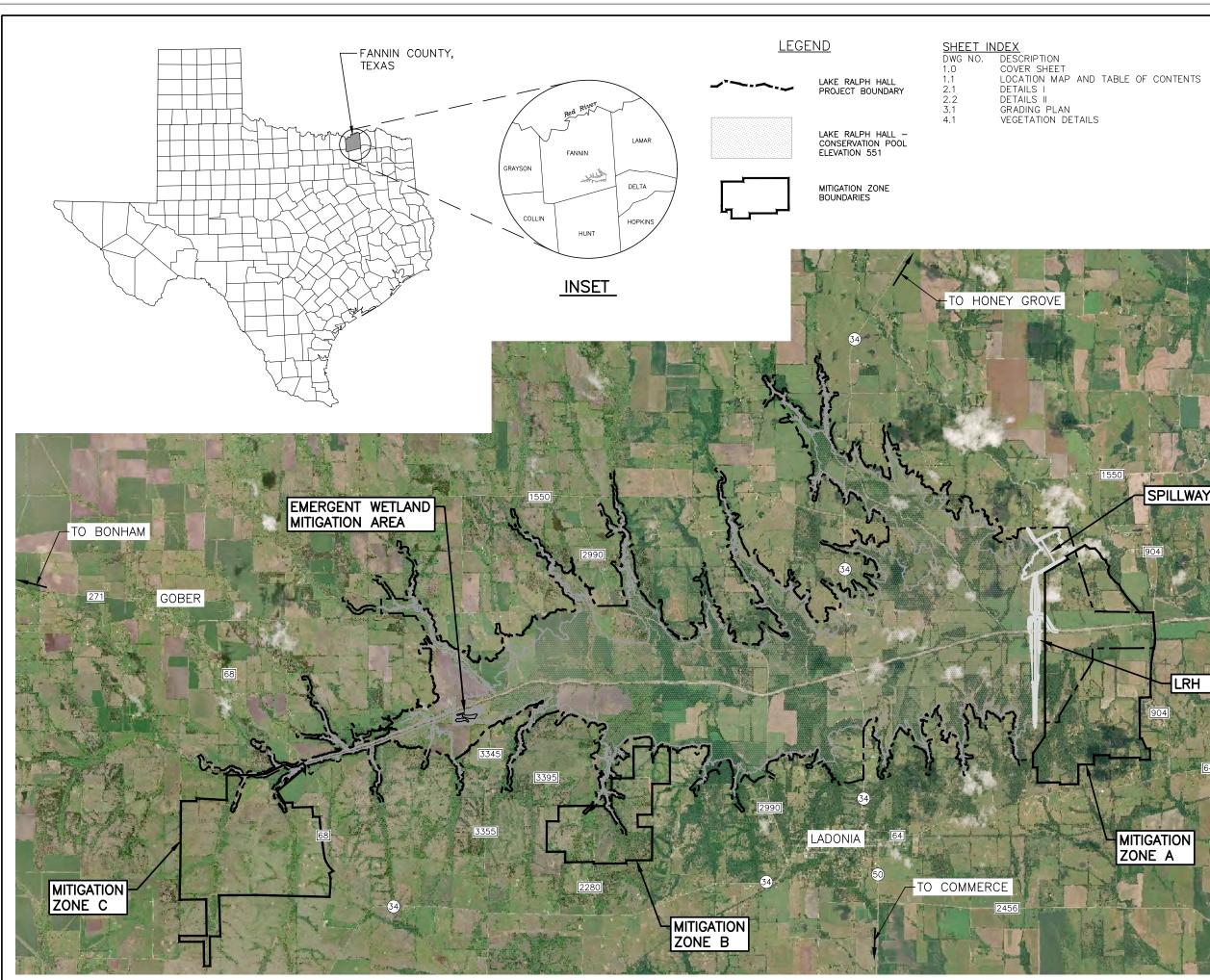
CONSTRUCTION PLANS FOR LAKE RALPH HALL MITIGATION PROJECT VOLUME 5

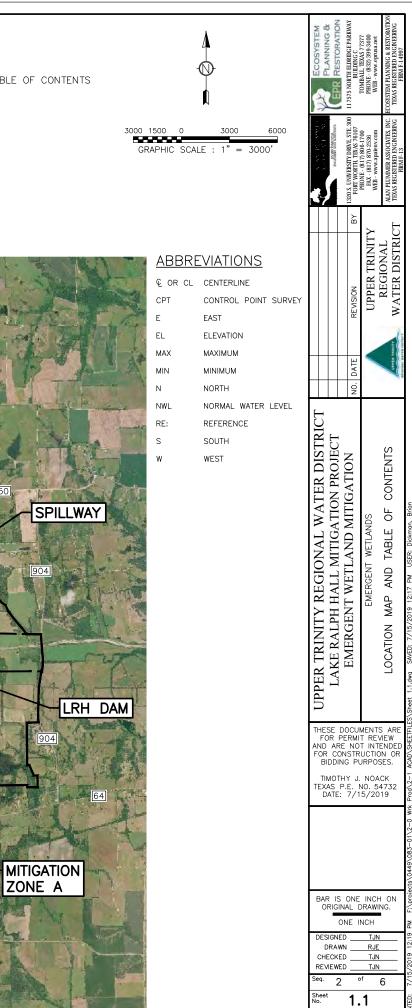

EMERGENT WETLAND MITIGATION

UPPER TRINITY REGIONAL WATER DISTRICT

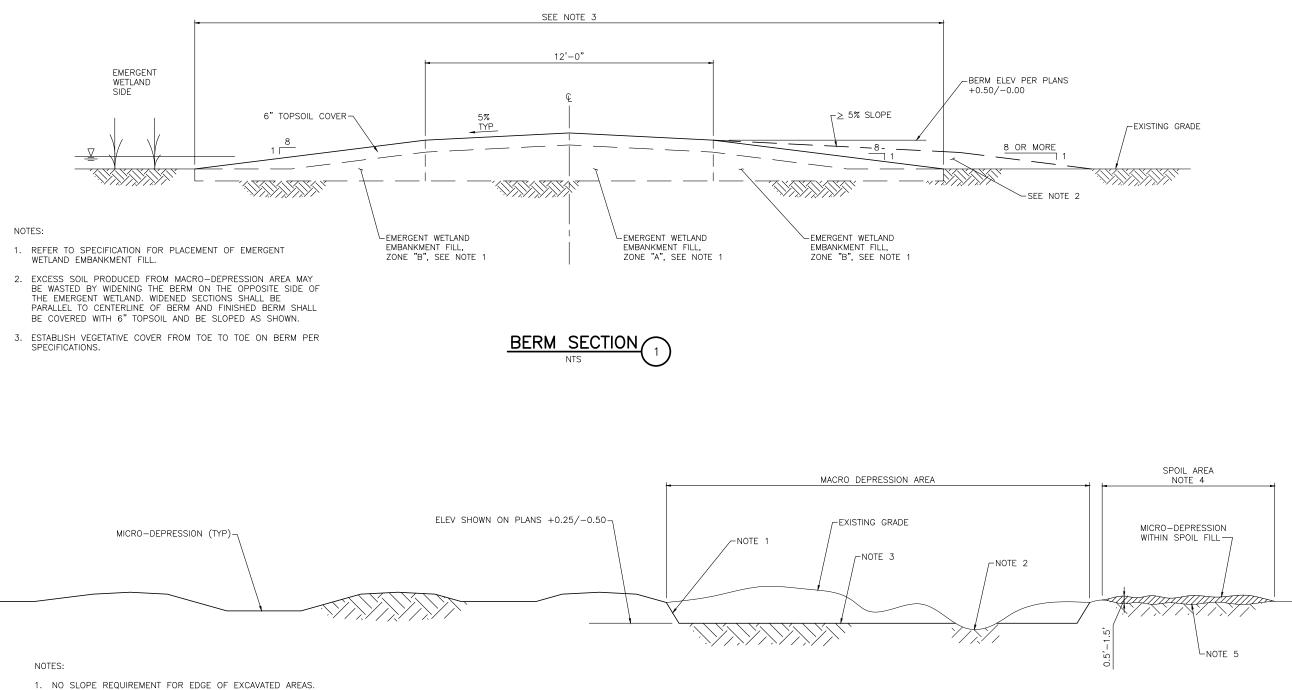
Rich Lubke	President
Ramiro Lopez 🗕	Vice President
Mike Fairfield _	Treasurer
Brian Roberson	Secretary

Larry N. Patterson, P.E.	Executive Director
Thomas W. Snyder	— Director, Construction and Engineering
Edward M. Motley, P.E.	Lake Ralph Hall Program Manager


KEVIN L. TWEEDY, P.E., VICE PRESIDENT ECOSYSTEM PLANNING AND RESTORATION JULY 2019

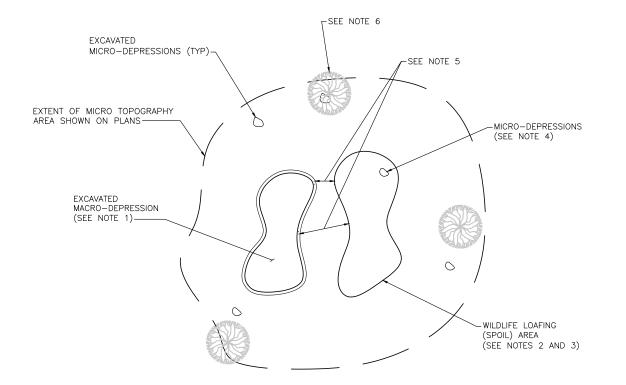


TEXAS REGISTERED ENGINEERING FIRM F-13


THESE DOCUMENTS ARE FOR PERMIT REVIEW AND ARE NOT INTENDED OR CONSTRUCTION OF BIDDING PURPOSES. IMOTHY J NOACK PI TEXAS P.E. NO. 54732 DATE: 7/12/2019

TIMOTHY J. NOACK, P.E., PROJECT MANAGER Alan Plummer Associates, Inc.

0449-083-01


TYPICAL SECTION EXCAVATED MACRO/MICRO DEPRESSION COMPLEX

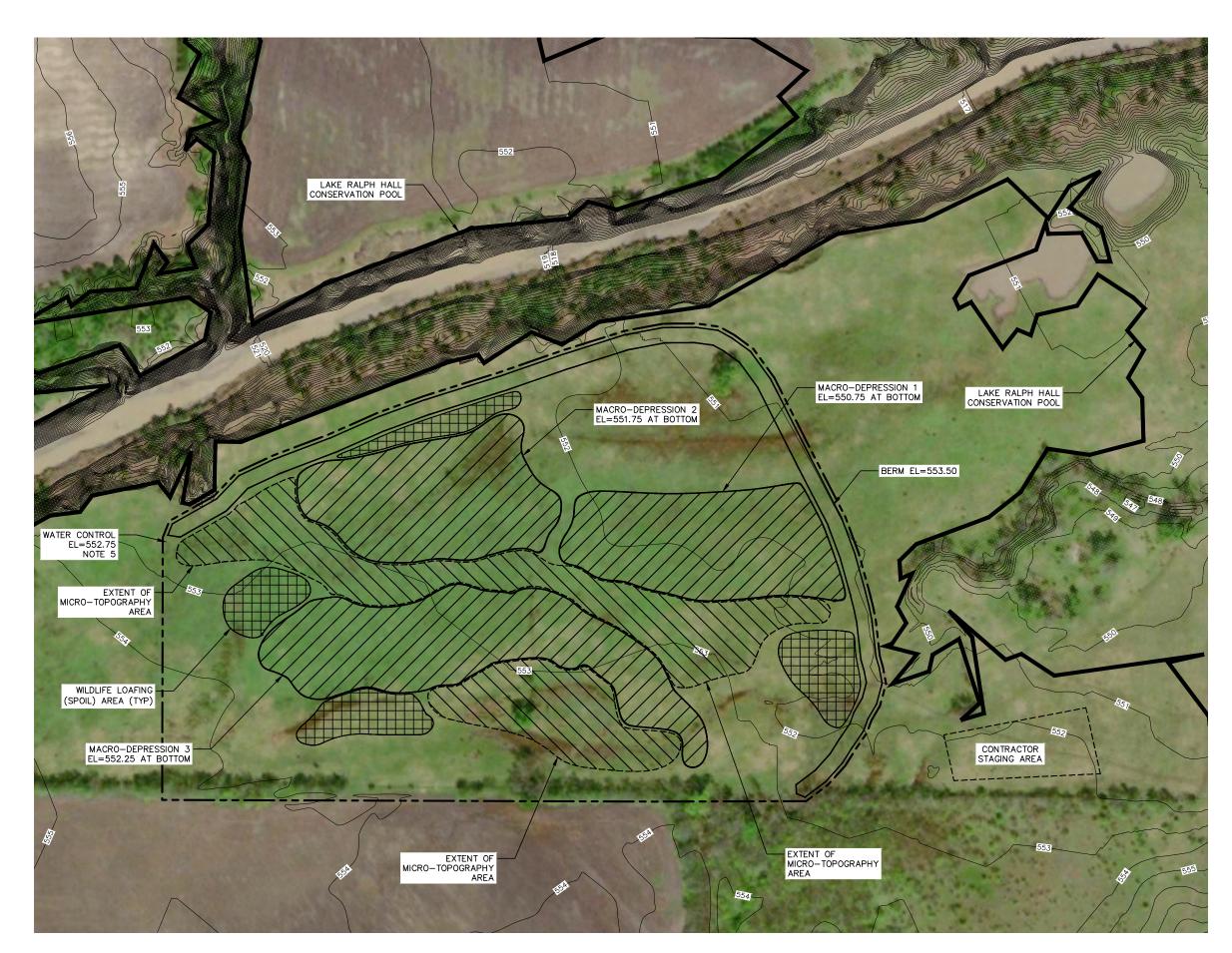
NTS

2

- 2. EXISTING GRADES LOWER THAN THE DESIGN BOTTOM ELEVATION SHOULD NOT BE FILLED.
- 3. TOPSOIL REPLACEMENT NOT REQUIRED IN EXCAVATED MACRO-DEPRESSIONS.
- 4. WILDLIFE LOAFING AREAS MAY BE CREATED USING EXCESS SPOIL FROM EXCAVATED MACRO-DEPRESSION AREAS THAT IS NOT USED FOR CONSTRUCTION OF THE BERM. REFER TO APPROVED SPOIL AREAS SHOWN ON THE PLAN SHEETS.
- 5. TOPSOIL STRIPPING IS NOT REQUIRED IN SPOIL AREAS.

UPPER TRINITY REGIONAL WATER DISTRICT LAKE RALPH HALL MITIGATION PROJECT EMERGENT WETLAND MITIGATION NO. DATE REVISION BY 1230 SUNVERSTORMS. 1330 SUNVERSTORMS. 1175 RECORDENTION EMERGENT WETLAND MITIGATION EMERGENT WETLAND MITIGATION DATE REVISION BY 1230 SUNVERSTORMS. 1175 ROOT SURVEYSION SURVEY	Y REGIONAL WATER DISTRICT H HALL MITIGATION PROJECT NT WETLAND MITIGATION EMERCENT WETLAND MITIGATION No. Date Revision BY No. Date Revision BY	UPPER TRINITY REGIONAL WATER DISTRICT LAKE RALPH HALL MITIGATION PROJECT EMERGENT WETLAND MITIGATION EMERGENT WETLAND MITIGATION EMERGENT WETLAND MITIGATION No. Date EMERGENT WETLAND NO. Date EMERGENT WETLAND NO. Date EMERGENT WETLAND NO. Date EMERGENT WETLAND NO. Date EMERGENT WETLAND NO. Date EMERGENT WETLAND NO. Date MATER DISTRICT MATER DISTRICT
Y REGIONAL WATER DISTRICT H HALL MITIGATION PROJECT NT WETLAND MITIGATION EMERCENT WETLANDS DETAILS 1	UPPER TRINITY REGIONAL WATER DISTRICT LAKE RALPH HALL MITIGATION PROJECT EMERGENT WETLAND MITIGATION EMERGENT WETLAND MITIGATION EMERGENT WETLAND EMERGENT WETLANDS EMERGENT WETLANDS Detrails 1 DETAILS 1	Image: Solution of the second state
Y REGIONAL WATER DISTRICT - H HALL MITIGATION PROJECT NT WETLAND MITIGATION EMERCENT WETLANDS DETAILS 1	UPPER TRINITY REGIONAL WATER DISTRICT LAKE RALPH HALL MITIGATION PROJECT EMERGENT WETLAND MITIGATION EMERGENT WETLAND MITIGATION EMERGENT WETLAND DETAILS DETAILS DETAILS DETAILS	Herein Construction Definition Herein Construction Law State Construction Herein Construction Law State Construction Herein Construction Emergent wertland Babaris Sone Incholo Definition Base Is one Incholo Definition Base Is one Incholo Definition
γπz	THESE DOCUMENTS ARE FOR PERMIT REVIEW AND ARE NOT INTENDED FOR CONSTRUCTION OR BIDDING PURPOSES. TIMOTHY J. NOACK	HESE DOCUMENTS ARE FOR PERMIT REVIEW AND ARE NOT INTENDED FOR CONSTRUCTION OR BIDDING PURPOSES. TIMOTHY J. NOACK TEXAS P.E. NO. 54732 DATE: 7/12/2019
	BIDDING PURPOSES. TIMOTHY J. NOACK	BIDDING PURPOSES. TIMOTHY J. NOACK TEXAS P.E. NO. 54732 DATE: 7/12/2019 BAR IS ONE INCH ON ORIGINAL DRAWING.

TABLE 5.1: Wetla		
Hydrotogic Zone	Common Name	Scienti
	Switchgrass	Panicun
	Fastern Gamagrass	Tupsacum
	Inland Seapats	Chasmanlh
	Green Sprangietop	Leptoch
A - Temporaniy Flooded	Praine Wildrye	Elymus :
	Illmois Bundleflower	Desmanth
	Partndge Pea	Chamaeons
	Swamp Sunflower	Rebanthus
	Plains Coreopsis	Coreops
	Swamp Smartweed	Polygonum h
	Spikerush	Fleoch
	Sedges	Care
D. Oversent Greated	Squarester Spikerush	Eleccharis (
B - Seasonally Flooded	Crowfoot Sedge	Carex s
	Duck Potate Arrowhead	Sagitlar
	Soft Rush	Juncus
	Three-square bulrush	Schoenople
	Grassy Arrowhead	Sagillaris
A ALL ALL ALL ALL ALL ALL ALL ALL ALL A	P okerelweed	Pontede
C - Sem-Permanently Flooded	Olney's Bulrush	Schoenopiec!
	Sofistem Buirush	Schoenoplectus
	G ant Bulrush	Schoenopieci
	Coontail	Ceratophyllu
D - Permanently Flooded	Amendan Wild Celery	Vallisnena
	American Sondweed	Polomage


NOTES:

- 1. EXCAVATED MACRO-DEPRESSION SHALL BE CONSTRUCTED PER GRADING SHEET 4.1.
- WILDLIFE LOAFING (SPOIL) AREAS ARE TO BE LOCATED IMMEDIATELY ADJACENT TO EXCAVATED MACRO-DEPRESSIONS. REFER TO GRADING SHEET 4.1 FOR APPROXIMATE LOCATIONS AND SHAPES.
- 3. FOOTPRINT OF WILDLIFE LOAFING (SPOIL) AREA SHALL BE APPROXIMATE SHAPES SHOWN IN THE PLANS. HOWEVER EXTENT OF FOOTPRINT MAY BE FIELD ADJUSTED TO ACCOMMODATE ACTUAL VOLUME OF SPOIL WHILE MAINTAINING TOTAL SPREAD THICKNESS OF 0.5' TO 1.5', UNLESS A MINIMUM ELEV IS SHOWN ON THE PLANS. SPOIL AREAS DO NOT NEED TO COMPLETELY DRAIN WATER AS SHALLOW PONDING IS ACCEPTABLE.
- 4. MICRO-DEPRESSIONS SHALL BE SHALLOW (0.5'-1.5') EXCAVATED DEPRESSIONS MEASURING APPROX 1 TO 2 EQUIPMENT WIDTHS BY 5' TO 20' LONG. SPOIL FROM MICRO DEPRESSIONS MAY BE DEPOSITED ADJACENT TO THE MICRO-DEPRESSION, SPREAD SPOIL TO NO MORE THAN 1' HIGH. MICRO-DEPRESSIONS SHALL BE PLACED IN RANDOM PATTERNS IN THE WILDLIFE LOAFING (SPOIL) AREA AND AROUND THE MACRO-DEPRESSIONS TO THE EXTENT LINE SHOWN ON THE PLANS. DENSITY OF MICRO-DEPRESSIONS SHALL BE 2 TO 4 PER ACRE. DO NOT PLACE MICRO-DEPRESSIONS WITHIN THE EXCAVATED MACRO-DEPRESSIONS.
- 5. DISTANCE BETWEEN WILDLIFE LOAFING (SPOIL) AREA AND MACRO-DEPRESSION EXCAVATION SHALL BE 10 TO 50 FEET, UNLESS PLANS SHOW OTHERWISE.
- 6. ALL EXISTING TREES SHALL REMAIN. AVOID PLACING MICRO-DEPRESSIONS WITHIN 10 FEET OF THE DRIP LINE OF EXISTING TREES GREATER THAN 6" DBH.

Biggerge 2045 UPPER TRINITY REGIONAL WATER DISTRICT Image: constraint of the second s	REAL RESTORATION	117575 NORTH TOMBAL PHONE - WEB - W WEB - W WEB - W VEB - W						
UPPER TRINITY REGIONAL WATER DISTRICT LAKE RALPH HALL MITIGATION PROJECT EMERGENT WETLAND MITIGATION EMERGENT WETLAND MITIGATION EMERGENT WETLANDS DETAILS II			1320 S. UNIVERSITY DRIVE, STE. FORT WORTH, TEXAS 76107	PHUNE - (817) 806-1700 FAX - (817) 870-2536 WEB - www.apaienv.com	ALAN PLUMMER ASSOCH TEXAS REGISTERED ENGI FIRM F-13			
UPPER TRINITY REGIONAL WATER DISTRICT LAKE RALPH HALL MITIGATION PROJECT EMERGENT WETLAND MITIGATION EMERGENT WETLAND MITIGATION EMERGENT WETLANDS DETAILS II			ВΥ	Х	L			
UPPER TRINITY REGIONAL WATER DISTRICT LAKE RALPH HALL MITIGATION PROJECT EMERGENT WETLAND MITIGATION EMERGENT WETLANDS DETAILS II			REVISION	UPPER TRINITY	REGIONAL WATER DISTRIC			
UPPER TRINITY REGIONAL WATER DISTRICT LAKE RALPH HALL MITIGATION PROJECT EMERGENT WETLAND MITIGATION EMERGENT WETLANDS DETAILS II				1	Taket			
UPPER TRINITY REGIONAL WATER DISTRICT LAKE RALPH HALL MITIGATION PROJECT EMERGENT WETLAND MITIGATION EMERGENT WETLANDS DETAILS II			DATE		ATT A			
UPPER TRINITY I LAKE RALPH I EMERGENT EI			NO.					
THESE DOCUMENTS ARE	UPPER TRINITY I LAKE RALPH F		EMERGENI	43				
	ORIG	IN/	AL C	RAWI				
BAR IS ONE INCH ON ORIGINAL DRAWING.	DESIGN	ED		TJN				
ORIGINAL DRAWING. ONE INCH DESIGNED <u>TJN</u>	CHECK	ED		TJN TJN				
ORIGINAL DRAWING. ONE INCH DESIGNED TJN DRAWN RJE CHECKED TJN	Seq. ∠ Sheet No.	ł	。 2.	2	6			

fic Name
s wyatum
i daelyloides
ium tatifolium
tioa dubra
canadensis
us illingensis
ita fasciculata
angustifolius
is finctona
iya'rapi;perciales
ans spp
* spp
quadrangulata
Crus-Conv
ia latifolia
s effusus
otus pungens
a grammea
na cordala
lus amencanus
i tabernaemoniani
tus californicus
utti derttersutti
a americana
ton nodosus

)	
100	50	0	100	200
GI	RAPHI	C SCALE	: 1" =	100'

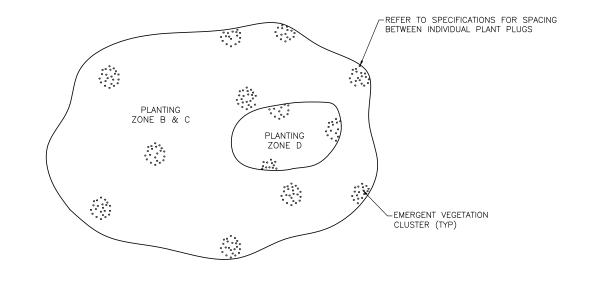
NOTES:

- 1. SEE DETAIL 1 ON SHEET 3.1 FOR BERM CROSS-SECTION.
- 2. SEE DETAILS 2 AND 3 ON SHEETS 3.1 AND 3.2 FOR MACRO/MICRO-TOPOGRAPHY COMPLEX.
- 3. MACRO-DEPRESSION AREAS SHALL TOTAL A MINIMUM OF 8.0 ACRES.
- 4. SEE DETAILS 4 AND 5 ON SHEET 5.1 FOR EMERGENT WETLAND VEGETATION PLANTING.
- TERMINATE BERM AT LOCATION SHOWN. ADJUST GRADE AT TOE OF BERM TO ELEV SHOWN TO SET MAX WATER 5. LEVEL IN WETLAND. RE-ESTABLISH VEGETATION COVER ON ANY AREAS DISTURBED DURING GRADING OPERATIONS.

LEGEND

MACRO-DEPRESSION

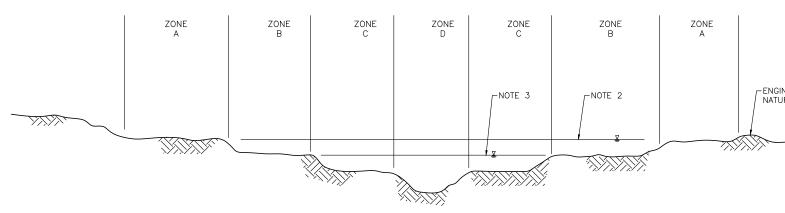
WILDLIFE LOAFING (SPOIL) AREAS


MICRO-TOPOGRAPHY AREA

CONSERVATION EASEMENT

POOL

EXTENT OF CONSERVATION



NOTES:

- EACH CLUSTER TO CONTAIN ONE PLANT SPECIES WITH 8-20 PLANT PLUGS PER CLUSTER FOR PLANTING ZONES B AND C, AND 8-12 PLANT PLUGS FOR ZONE D.
- 2. RANDOMLY PLACE EACH CLUSTER WITHIN THE SPECIFIED PLANTING ZONE

NOTES:

- ZONE A = TEMPORARY FLOODED ZONE B = SEASONALLY FLOODED ZONE C = SEMI-PERMANENTLY FLOODED ZONE D = PERMANENTLY FLOODED SEE ALSO SPECIFICATIONS FOR ADDITIONAL DETAILS.
- 2. COOL SEASON NORMAL WATER LEVEL.
- 3. WARM SEASON NORMAL WATER LEVEL.
- 4. REFER TO TABLE 5.1 FOR WETLAND SPECIES LIST.

AQUATIC VEGETATION PLANTING ZONES 5

UPPER TRINITY REGIONAL WATER DISTRICT LAKE RALPH HALL MITIGATION PROJECT EMERGENT WETLAND MITIGATION EMERGENT WETLAND MITIGATION EMERGENT WETLAND MITIGATION EMERGENT WETLAND MITIGATION EMERGENT WETLAND VEGETATION DETAILS WATER DISTRICT	2	EDD PESTOPATION		11757	10MBALI, 1EAAS 77377 PHONE - (832) 399-3400 WEB - www.eprusa.net	AN PLINMER ASSOCIATES, INC. ECOSYSTEM PLANNING & RESTORATION EXAS RECEIVERD ENGNEERING FIRM F-13 FIRM F-14997	
UPPER TRINITY REGIONAL WATER DISTRICT LAKE RALPH HALL MITIGATION PROJECT EMERGENT WETLAND MITIGATION EMERGENT WETLAND MITIGATION EMERGENT WETLANDS VEGETATION DETAILS		ENGINEERS AND STRATS		1320 S. UNWERSITY DRIVE, STE. 30 FORT WORTH, TEXAS 76107	PHONE - (817) 806-1700 FAX - (817) 870-2536 WEB - www.anaienv.com	ALAN PLUMMER ASSOCIATES, INC TEXAS REGISTERED ENGINEERINC FIRM F-13	
UPPER TRINITY REGIONAL WATER DISTRICT LAKE RALPH HALL MITIGATION PROJECT EMERGENT WETLAND MITIGATION EMERGENT WETLAND MITIGATION EMERGENT WETLANDS VEGETATION DETAILS				BΥ	Y	CT	
UPPER TRINITY REGIONAL WATER DISTRICT LAKE RALPH HALL MITIGATION PROJECT EMERGENT WETLAND MITIGATION EMERGENT WETLANDS EMERGENT WETLANDS VEGETATION DETAILS				REVISION	UPPER TRINIT	REGIONAL WATER DISTRIC	
UPPER TRINITY REGIONAL WATER DISTRICT LAKE RALPH HALL MITIGATION PROJECT EMERGENT WETLAND MITIGATION EMERGENT WETLANDS EMERGENT WETLANDS VEGETATION DETAILS						-	
UPPER TRINITY REGIONAL WATER DISTRICT LAKE RALPH HALL MITIGATION PROJECT EMERGENT WETLAND MITIGATION EMERGENT WETLANDS EMERGENT WETLANDS VEGETATION DETAILS	$ \uparrow$			DATE		APPENDING NAME	
UPPER TRINITY LAKE RALPH EMERGEN E				NO. I		N.	
FUR DEBWIL BEVIEW	UPPER TRINITY	Bigged and the construction of the construction o					
			IN/	AL C	RAW		
ORIGINAL DRAWING.			ED	_	TJN		
ORIGINAL DRAWING. ONE INCH DESIGNED	СН	ECK	ED	_	TJN	<u>ا</u>	
ORIGINAL DRAWING. ONE INCH DESIGNED <u>TJN</u> DRAWN <u>RJE</u> CHECKED <u>TJN</u>		* I L V					
ORIGINAL DRAWING. ONE INCH DESIGNED <u>TJN</u> DRAWN <u>RJE</u> CHECKED <u>TJN</u>	Seq.		5	0	т	6	

ENGINEERED SPILLWAY OR

APPENDIX G

FUNCTIONAL CAPACITY OF PROPOSED MITIGATION STREAMS WITHIN MITIGATION ZONES A, B AND C

APPENDIX G

RATIONALE FOR DETERMINATION OF CREDITS

A. Overview

Full documentation of the SWAMPIM assessment protocol is provided in **Appendix C**. The methodology related to calculation of SWAMPIM FCUs for a given SAR is also described in **Part III, Section 4**. SWAMPIM FCUs are calculated using the following equation:

FCU = Stream Length x FCI x Multiplication Factor

Where:

FCU = Functional Capacity Unit Stream Length = Length of SAR, feet FCI = Total Functional Condition Index score Multiplication Factor determined by stream characterization as follows: Ephemeral Streams = 0.00125 Intermittent Streams = 0.00250 Intermittent Streams with Perennial Pools = 0.00315 Perennial Streams = 0.00380

A discussion of how each of the three variables (stream length, FCI, and multiplication factor) is determined and the rationale for each is provided in the following sections.

B. Stream Length

Stream length of the SAR is measured directly from the design plans and is provided in linear feet. The stream length used in the FCU calculation omits the length of stream within any easements that may cross a stream and excludes stream lengths occupied by culverts, roads, or other requisite crossings that are outside the conservation easement boundary.

C. FCI Scores

The determination of mitigation credits requires projected FCI scores. For consistency and repeatability of FCI scores, it is important that all assessors have experience in performing ecological functional assessments, and more specifically in using the SWAPIMP protocol. It is also important that assessors have detailed knowledge of the scores that were developed during the baseline condition assessments, so that the methodologies can be applied consistently between pre-mitigation and post-mitigation conditions. The assessor should understand how each FCI metric within each functional category is scored, including understanding relationships between metrics. As an example, **Table G-1** is provided to show which FCI metrics are affected by the presence or absence of water.

	Scored Metric	Score Basis
	1. Flow Regime and Groundwater Interaction	Non-Water Dependent ¹
S	2. Channel Condition/Alteration	Non-Water Dependent
ion	3. Channel Capacity to Flow Frequency	Non-Water Dependent
nct	4. Channel Bank Stability	Non-Water Dependent
Ъu	5. Channel Sinuosity	Non-Water Dependent
Hydrologic Functions	6. Channel Bottom Substrate	Non-Water Dependent
00	7. Instream Bottom Topography OR Manning's Number ²	Non-Water Dependent
ydr	8. Channel Incision	Non-Water Dependent
Ì	9. Pools	Water Dependent
	10. Channel Flow Status	Water Dependent
suc	1. Bank Stability	Non-Water Dependent
Water Quality / Biogeochemical Functions	2. Channel Bottom Bank Stability OR Channel Sediment/Substrate Composition ³	Non-Water Dependent
alit I Fu	3. Water Clarity	Water Dependent
Water Quality / ochemical Func	4. Nutrient Enrichment OR Aquatic Vegetation ⁴	Water Dependent
ter em	5. Composition of Organic Matter	Non-Water Dependent
Na och	6. Land Use Pattern (beyond immediate riparian zone)	Non-Water Dependent
de	7. Riparian Zone Width (from stream edge to field)	Non-Water Dependent
Bio	8. Riparian Zone Vegetation Protection/Completeness	Non-Water Dependent
	1. Flow Regime	Non-Water Dependent ¹
	2. Epifaunal Substrate/Available Cover	Non-Water Dependent
	3. Stream Bottom Substrate	Non-Water Dependent
Suc	4. Pool Variability	Non-Water Dependent
ctio	5. Sediment Deposition/Scouring	Non-Water Dependent
un	6. Channel Flow Status	Non-Water Dependent
аt	7. Channel Alteration	Non-Water Dependent
Habitat Functions	8. Channel Sinuosity	Non-Water Dependent
На	9. Bank Stability	Non-Water Dependent
	10. Vegetative Protection	Non-Water Dependent
	11. Riparian Zone	Non-Water Dependent
	12. Riparian Habitat Condition	Non-Water Dependent

TABLE G-1 SWAMPIM FCI Metrics that are Dependent Upon the Presence of Water

Notes for Table G-1 are provided on the following page.

Notes for Table G-1:

- ¹ Flow Regime is partially dependent on the presence of water. For ephemeral streams, if the SAR has good channel form AND water in the channel it would receive a score of 2. If the SAR has EITHER good channel form OR water is present then it would score a 1, and if the SAR has poor channel form AND no water it would score a 0. For intermittent streams, if the SAR has good channel form AND water in the channel, it would receive a score of 4. If the intermittent SAR has poor channel form OR lacked water, it would score a 3.
- ² Instream bottom topography is globally used in lieu of Manning's N as it allows for a visual assessment of the stream reach.
- ³ Channel bottom bank stability is used globally instead of channel sediment/substrate composition because it more accurately represents the channel condition within the Lake Ralph Hall project watershed.
- ⁴ Nutrient enrichment is used globally for scoring because aquatic vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed.

The following paragraphs provide detailed descriptions of projected FCI scores that were used in the determination of credits. The FCI scores provided are expected to be achieved at the end of construction (EOC), at the end of the 7-year monitoring period (EOM), and at maturity, given typical climatic conditions. Each FCI metric is described below and includes the projected FCI scores (or range of projected FCI scores) expected for the metric within the mitigation zones for each stream classification type. Streams categorized as "restoration" and "re-establishment" in the Mitigation Plan are scored with similar ranges and therefore only restoration is displayed below. A brief bulleted discussion is included describing the proposed activities to achieve the projected score. A table is also included that shows the conversion of qualitative descriptors to numeric scores ranging from 0 to 10 used for each SWAMPIM metric. Note that each table is taken from the SWAMPIM field sheets.

Hydrologic Functions

1. Flow regime

	Baseline	EOC	EOM	At Maturity
	Range	Expected	Expected	Expected
		Range	Range	Range
Ephemeral Streams (Enhancement & Restoration)	0 to 2	1 to 2	1 to 2	1 to 2
North Sulphur River Main Channel Restoration	3	7	7	7
Former North Sulphur River Restoration		7	7	7

						Flow Reg	ime					
	Туре	Per	enn	ial	Flow Regime Intermittent w/ Perennial Pools 7 6 5			Intern	nittent	Ephemeral		
(Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement & Restoration

- Scoring comparable to baseline scores but channel form is expected to improve.
- Channel displays good channel form and contains water: score = 2
- Channel displays good channel form and no water: score = 1

North Sulphur River Main Channel Restoration

- Baseline condition of existing NSR is intermittent. Evidence of groundwater inflows observed throughout the restoration reach.
- Creation of relatively deep pools.
- Ensuring adequate compaction of fill in floodplain the material being used as fill from the side slopes is comprised of a low-permeability clay.

- Flow would consist of contributions from the immediate watershed, lateral infiltration as groundwater inputs, and occasional spills from the dam.
- Retention of water aided by the planned transition to the existing channel at the downstream extent of the restored channel.
- Placing an impermeable layer or barrier behind the proposed "Floodplain Step" structure or using the floodplain blocks as a means of retaining groundwater in the restored main channel corridor.
- Based on preliminary designs and hydrologic modeling, pools would retain water most of the year. Refer to the Preliminary Design Memorandum¹ for the restored main channel NSR.

Former North Sulphur River Restoration

• Preliminary hydrologic analyses² indicate that during normal climatic conditions, this channel would retain water year-round in deep pools throughout most of its length. Additional detailed hydrologic analyses³ supports classification as intermittent with perennial pools.

2. Channel Condition/Alteration

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams	1 to 8			
Enhancement		2 to 8	4 to 8	6 to 8
Restoration	-	8 (no range)	8 (no range)	8 (no range)
North Sulphur River Main Channel Restoration	0	8	8	8
Former North Sulphur River Restoration		8	8	8

		Optimal		S	Suboptima	al	Marg	ginal		Poor	
							Altered ch	annel; 40-			
	Natural channel; no				Some channelization			he reach	Char	inel is ac	tively
	stru	uctures o	r	(usually	y in bridge	areas)	channe	lized or	dov	wncutting	g or
Channel	channeli	zation mi	nimal.	or	past chan	nel	disrupted	l; braided	wider	ning. >80	0% of
Condition	No e	evidence	of	alteration, but with significant recovery of		channel wit	channel with excessive		the reach riprap or		
/Alteration	downcutt	ing or exc	cessive			frequency of	of overbank	channelized.			
Alteration	lateral c	utting. N	ormal	channel bed and banks.		flows o	nto the	Degra	dation, d	ikes or	
	frequency				able frequ		floodplain. Historical		levees prevent		
	connec	ction betw	veen	overt	oank flows	onto	to incision, dikes, or		access to the		
	channel	and floor	dplain	floodplain.		levees	restrict	f	loodplain	ı.	
						flood	plain.				
Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement

• For sections of existing stream channels that are stable to partially stable, a combination of instream structure placement, localized grading and bank sloping, bend realignment, and supplemental plantings may be implemented.

Ephemeral Streams – Restoration

• Natural channel design used to produce appropriate channel form and sinuosity.

¹ Freese & Nichols, Inc. Main Channel North Sulphur River Restoration – Preliminary Design Memorandum, April 9, 2019

² Robert J. Brandes Consulting. Technical Memorandum – Analysis of Flood Flows for Revised North Sulphur River Restored Channel. Dated 11 August 2017.

³ Ecosystem Restoration and Planning LLC. Technical Memorandum Number 3, July 2019.

- Normal frequency of hydrological connection between restored channel and its floodplain.
- Anticipated flooding frequency to fall within range of return periods of 1.5 to 2.5 years.

North Sulphur River Main Channel Restoration

- Natural channel design used to produce appropriate channel form and sinuosity.
- Normal frequency of hydrological connection between restored channel and its floodplain.
- Anticipated flooding frequency to fall within range of return periods of 1.5 to 2.5 years.

Former North Sulphur River Restoration

- Natural channel design used to produce appropriate channel form and sinuosity.
- Normal frequency of hydrological connection between restored channel and its floodplain.
- Anticipated flooding frequency to fall within range of return periods of 1.5 to 2.5 years.

3. Channel Capacity to Flow Frequency

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams	1 to 8	-		
Enhancement		2 to 8	4 to 8	6 to 8
Restoration		8 (no range)	8 (no range)	8 (no range)
North Sulphur River Main Channel Restoration	0	8	8	8
Former North Sulphur River Restoration		8	8	8

	0	Optimal			Suboptima	ıl	Marg	ginal		Poor	
Channel Capacity to Flow Frequency Ratio (for 2- year Peak Flow)	flow free such overflor event 1.25 frequen	that ba w from s s occur to 2.5-y	ratio is nk storm at a ear o to 2-	freque that ba storm frequer years than e Ratio to	el capacity ncy ratio i nk overflo events are or less fre every 2.5 y 2-year pe 0.75 or >1.	s such w from e more ery 1.25 equent years. eak flow	such th overflow f events a frequent t	ncy ratio is at bank rom storm are more han every s frequent y 5 years. year peak	flow fr such th from s more every freque years.	nel capac equency i at bank o torm ever e frequent half year nt than ev Ratio to low <0.25	ratio is verflow nts are than or less very 10 2-year
Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement

• Scoring comparable to baseline scores.

Ephemeral Streams – Restoration

- Natural channel design will emphasize designing channels to carry the bankfull discharge and allowing larger flows to overbank onto an active floodplain.
- Reconnection with stream's historic floodplain will be preference when practical.
- Where reconnection with historic floodplain not practical, bankfull benches will be excavated to provide floodplain access such that the excavated floodplain is accessed by flood flows at the bankfull discharge and greater.

North Sulphur River Main Channel Restoration

- Similar metrics to the Ephemeral Streams Restoration
- Natural channel design will emphasize designing channel to carry the design discharge and allowing larger flows to overbank onto an active floodplain.

Former North Sulphur River Restoration

- Similar metrics to the Ephemeral Streams Restoration
- Natural channel design will emphasize designing channel to carry the bankfull discharge and allowing larger flows to overbank onto an active floodplain.
- 4. *Channel Bank Stability* (Note the score for this metric is the average of the scores of the left and right sides.)

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams	1 to 8			
Enhancement		2 to 8	4 to 8	6 to 8
Restoration		6 to 8	7 to 8	8 (no range)
North Sulphur River Main Channel Restoration	2	9	9	9
Former North Sulphur River Restoration		9	9	9

		Optimal			Suboptim	al	Marg	ginal		Poor	
Channel Bank Stability	eviden bank fa minima affect ve water underc erosi meand no red	Inks stab ce of ero ailure abs ail; (<5% c ed), pere getation line; no r ut banks on on ou ler bends cently exp no recer falls.	sion or sent or of bank ennial to aw or (some tside s o.k.); posed	infrequ of e healed ban areas a undero vegeta in recent	derately s uent, sma erosion m d over. 5 k in react of minor and/or ba cutting; p ation to w most pla most pla dly expose rare but p	all areas nostly -30% of h has erosion nk erennial vaterline ces; ed trees	Moderately perennial ve waterline spa scoured or lateral eros held by ha (trees, rock and erod elsewhere; bank in reac of erosion undercuttin exposed tre fine root hai	y unstable; egetation to arse (mainly stripped by sion), bank ard points coutcrops) led bank 30-60% of h has areas and bank g; recently e roots and	vegeta severe ba expo com and commo area freque sectio	ble; no per- tion at wat e erosion o nks; recen- used tree of d/or severe dercut tree on; many e s; "raw" ar nt along st ns; 60-100 has erosio scars.	erline; f both tly pots falls ely es eroded reas traight 0% of
Grade (Left)	10	9	8	7	6	5	4	3	2	1	0
Grade (Right)	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement

- Vegetation will be planted to promote root mass along stream banks to provide stability.
- Minimal work such as localized grading and bank sloping and bend realignment to address erosion and channel migration issues.
- Inclusion of native material in-stream structures such as log vanes and/or toe wood to protect stream banks and maintain bank stabilities.

Ephemeral Streams – Restoration

- Channel will be reconstructed. Restored stream channel dimension will be sized to convey bankfull flows while maintaining stability with flows greater than bankfull spilling onto the floodplain.
- Vegetation will be planted to promote root mass along stream banks to provide stability.

• Inclusion of native material in-stream structures such as log vanes and/or toe wood to protect stream banks and maintain bank stabilities.

North Sulphur River Main Channel Restoration

- Channel will be reconstructed and stream channel dimension sized to convey design storm flows while maintaining stability with larger flows spilling onto the floodplain.
- Vegetation will be planted to promote root mass along stream banks to provide stability.
- Inclusion of native material in-stream structures such as rock vanes to protect stream banks and maintain bank stabilities.

Former North Sulphur River Restoration

- Channel will be reconstructed. Restored stream channel dimension will be sized to convey bankfull flows while maintaining stability with flows greater than bankfull spilling onto the floodplain.
- Vegetation will be planted to promote root mass along stream banks to provide stability.
- Inclusion of native material in-stream structures such as log vanes and/or toe wood to protect stream banks and maintain bank stabilities.

5. Channel Sinuosity

	Baseline	EOC	EOM	At Maturity
	Range	Expected	Expected	Expected
		Range	Range	Range
Ephemeral Streams	1 to 8			
Enhancement		1 to 8	1 to 8	1 to 8
Restoration		1 to 8	1 to 8	1 to 8
North Sulphur River Main Channel Restoration	1	4	4	4
Former North Sulphur River Restoration		8	8	8

	(Optimal		9	Suboptima	al	Marg	ginal		Poor	
Channel Sinuosity (bends in low gradient stream)	increas length longer straig length/v	in the str se the str 2.5 to 4 t than if it ht. Char ralley len ast >1.5.	ream imes were nnel	increa length longer straigh	s in the st ase the st 1.5 to 2.5 than if it nt line. Cl valley len to 1.5.	times times were a nannel	increase t length 1 to longer than straight line length/valle	he stream he stream o 1.5 times o if it were a e. Channel y length 1.0 1.2.	watei channe dista lengt	nnel stra way has elized for nce. Cha h/valley l qual to 1.	been a long annel ength
Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement

• Enhanced streams should maintain existing stream sinuosity. Some meander bends may be realigned to promote bank stability and decrease shear stresses on the bank.

Ephemeral Streams – Restoration

• Restored streams were designed with sinuosities that mimic stable reference reaches, as described in EPR Technical Memorandum 2 (**Appendix F**).

North Sulphur River Main Channel Restoration

• Formal design analyses of hydraulics, hydrology, and sediment transport indicated a target design sinuosity of 1.2 was appropriate for the reach.

Former North Sulphur River Restoration

• Formal design analyses of hydrology, topography, and sediment transport indicated design sinuosities greater than 2.0 for the reach.

6. Channel Bottom Substrate

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams	1 to 5			
Enhancement		1 to 5	1 to 5	1 to 5
Restoration		1 to 4	1 to 4	1 to 4
North Sulphur River Main Channel Restoration	0	6	6	6
Former North Sulphur River Restoration	-	4	4	4

	C	Optimal		u)	Suboptima	al	Mar	ginal		Poor	
Bottom	Little o	r no cha	nnel	Some gravel bars of			Sedimer	nt bars of	Chan	nel divide	d into
Substrate	enlarger	nent res	ulting	coarse stones and			rocks, sa	inds, and	braids or stream is		
Composition	from	sedime	nt	well-washed debris		silt co	mmon;	channe	lized; sub	strate is	
Composition	accumul	ation; cł	nannel	pres	present, little silt;		mode	rately	uniform	sand, silt,	clay, or
	is	stable.		moderately stable.		unst	able.	bedr	ock; unsta	able.	
Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement

- Channel bottom substrate will remain as uniform clay or mud with root mat development in areas with mature riparian corridors.
- Organic substrate deposition will occur seasonally in ephemeral enhancement streams with mature riparian cover.

Ephemeral Streams – Restoration

- Natural channel design will be employed to establish a stable channel bottom for the expected soil substrates.
- Channel bottom substrate will remain as uniform clay or mud with root mats developing as the wooded riparian corridors mature.
- Dominated by "sand-size" or smaller bed material for most SARs.
- Stable riffle slopes were determined through sediment transport analyses, and when valley/stream gradient exceeded predicted stable slopes, grade control structures, such as logs and rock riffles, were incorporated.
- Organic substrate deposition will occur seasonally in ephemeral restored streams as riparian cover matures.

North Sulphur River Main Channel Restoration

- Natural channel design approaches were used to establish a stable channel bottom for the expected soil substrates.
- Stable riffle slopes were determined through sediment transport analyses, and when valley/stream gradient exceeded predicted stable slopes, grade control structures, such as rock cross-vanes, were incorporated.

- In situ soils consist of a mixture of cobble, gravels, sands, and fine grains. Accordingly, sediment bars consisting of a mixture of this material should be common.
- Organic substrate deposition will occur seasonally as riparian cover matures.

Former North Sulphur River Restoration

- Natural channel design approaches were used to establish a stable channel bottom for the expected soil substrates.
- Stable riffle slopes were determined through sediment transport analyses, and when valley/stream gradient exceeded predicted stable slopes, grade control structures, such as logs and rock riffles, were incorporated.
- Stream bottom design consists of a mixture of sand, mud or clay, with root mats developing as well as submerged vegetation.
- Organic substrate deposition will occur seasonally as riparian cover matures.

7. Instream Bottom Topography

	Baseline	EOC	EOM	At Maturity
	Range	Expected	Expected	Expected
		Range	Range	Range
Ephemeral Streams (Enhancement & Restoration)	1 to 4	2 to 4	2 to 4	3 to 5
North Sulphur River Main Channel Restoration	1	4	5	6
Former North Sulphur River Restoration		5	6	7

		Optimal		Si	uboptim	nal	Marg	ginal		Poor	
Instream Bottom Topography	backwaters/oxbov riffles, vegeta	ep pools, boul ge woody deb	inclu the ite	nnel bo udes 5- ems list nal Cate	7 of ted in	Channe include the item in Op Cate	s < 5 of is listed itimal	inclu the it in	nnel bo udes < tems li Optim ategor	3 of sted al	
Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement and Restoration

• Enhanced and restored ephemeral channel SARs are expected to include a combination of pools, overhanging vegetation, logs/large woody debris, rootwad/toe wood, and/or riffles.

North Sulphur River Main Channel Restoration

• North Sulphur River Main Channel Restoration SARs will include pools, overhanging vegetation, rock vanes, riffles, woody debris, and/or vegetated shallows.

Former North Sulphur River Restoration

• The Former North Sulphur River Restoration SARs will include pools, overhanging vegetation, logs/large woody debris, riffles, rock, rootwad/toe wood, vegetated shallows, and/or gravel.

8. Channel Incision

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams	1 to 9			
Enhancement		2 to 9	3 to 9	3 to 9
Restoration		8 (no range)	8 (no range)	8 (no range)
North Sulphur River Main Channel Restoration	1	9	9	9
Former North Sulphur River Restoration		9	9	9

	(Optimal		5	Suboptima	ıl	Mar	ginal		Poor	
Channel Incision	slo Entrenchi	here cha pe >2%; ment rati channel	nnel o >1.4; slope	and \ s Entrenc Where	n ratio >1. Where cha slope >2% chment rat e channel ntrenchme >2.0	io >1.4; slope	and Wher slope Entrenchme Where cha <2%, Entren	o > 1.4 < 2.0 re channel > 2%, nt ratio >1.4; annel slope ichment ratio 2.0	Where >2%, ratio	n ratio >2 e channel Entrench o <1.4; Wi nel slope chment ra	slope nment here <2%,
Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement

• Future scores would be comparable to baseline scores for the enhancement streams except where banks are sloped and benches are established in select locations.

Ephemeral Streams – Restoration

 Natural channel design approaches utilized on ephemeral channel restoration SARs will result in streams with incision and entrenchment ratios appropriate for the valley slopes and stream types. Restored and re-established streams will have access to functional floodplains.

North Sulphur River Main Channel Restoration

 Natural channel design approaches utilized for the North Sulphur River Main Channel Restoration SARs will result in incision and entrenchment ratios appropriate for the valley slope and stream type. The restored stream will have access to a functional floodplain.

Former North Sulphur River Restoration

 Natural channel design approaches utilized for the Former North Sulphur River Restoration SARs will result incision and entrenchment ratios appropriate for the valley slope and stream type. The restored stream will have access to a functional floodplain.

9. Pools

	Baseline Range	EOC Expected	EOM Expected	At Maturity Expected
	U	Range	Range	Range
Ephemeral Streams (Enhancement & Restoration)	0 to 3	0 to 5	0 to 5	0 to 5
North Sulphur River Main Channel Restoration	3	7	7	7
Former North Sulphur River Restoration		5	5	5

		Optimal			Suboptima	l	Mar	ginal		Poor	
Pools (abundant, present, or absent)	abundant of the obscure	nd shallow ; greater the pool botto e due to de nre at least deep.	nan 30% om is opth, or	abund of the obscur	present, k ant; from 1 e pool bott re due to d pols are at feet deep.	0-30% om is epth, or least 3	but shal 5-10% o bottom is due to o the pool	present, low; from f the pool s obscure depth, or s are less eet deep.	en	s absent, tire bottor liscernible	m is
Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement & Restoration

• Additional pools associated with instream structures and stabilized meander bends, resulting in low suboptimal scores for most reaches

North Sulphur River Main Channel Restoration

- Hydrology and scale of North Sulphur River Main Channel Restoration will enable more pool diversity to be included in design and greater pool depths to be developed.
- Pools at least four feet in depth will be established.

Former North Sulphur River Restoration

- Hydrology and scale of Former North Sulphur River Restoration will enable more pool diversity to be included in design and greater pool depths to be developed.
- Pools at least three feet in depth will be established.

10. Channel Flow Status

	Baseline Range	EOC Expected	EOM Expected	At Maturity Expected
		Range	Range	Range
Ephemeral Streams (Enhancement & Restoration)	0 to 64	0 to 6	0 to 6	0 to 6
North Sulphur River Main Channel Restoration	2	6	6	6
Former North Sulphur River Restoration		6	6	6

Γ	Channel Flow	0	Optimal		S	Suboptima	al	Mar	ginal		Poor	
	Channel Flow Status (degree to which channel is filled)	minima	aches ba ver banks al amour I substra (posed.	s and nt of	availa <25	fills >75% ble chan % of cha ate is exj	nel; or nnel	the availab	e substrates	chanr prese	little wat nel and n nt as sta s. No wa zero.	nostly nding
	Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement & Restoration

• Future scores would be comparable to baseline scores.

⁴ During the baseline assessment, an ephemeral tributary (S2-TRIB3-(10)) slated for enhancement was observed with water occupying more than 75 percent of the channel.

- If water occupies the channel, it would be measured and recorded.
- If the channel is dry, this metric has a "no water equals zero" provision score would be zero.

North Sulphur River Main Channel Restoration

• Groundwater inflow along the alluvium-bedrock interface to the North Sulphur River Main Channel Restoration reach is anticipated to provide mid-range suboptimal conditions.

Former North Sulphur River Restoration

• Hydrology for the Former North Sulphur River Restoration reach including groundwater inflow supplemented by surface runoff is expected to result in mid-range suboptimal conditions.

Water Quality / Biogeochemical Functions

1. *Bank Stability* (Note the score for this metric is the average of the scores of the left and right sides.)

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams	1 to 8			
Enhancement		2 to 8	4 to 8	6 to 8
Restoration	-	6 to 8	7 to 8	8 (no range)
North Sulphur River Main Channel Restoration	2	9	9	9
Former North Sulphur River Restoration		9	9	9

		Optimal		S	Suboptim	al	Mar	ginal		Poor	
Bank Stability (score each bank, left or right facing downstream)	evidenc bank fai minimal	lure abs little po re probl	sion or ent or otential ems.	infre area mostly 30% o	erately st equent, s as of ero healed o f bank in reas of el	mall sion over. 5- reach	unstable; bank in r areas of high e	rately 30-60% of each has erosion; rosion al during ods.	area frequer sectio obvious 60-10	le; many s; "raw" a otly along ons and b bank slo 0% of bai sional sc	reas straight ends; ughing; nk has
Grade (left)	10	9	8	7	6	5	4	3	2	1	0
Grade (right)	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement

- Vegetation will be planted to promote root mass along stream banks to provide stability.
- Minimal work such as localized grading and bank sloping and bend realignment to address erosion and channel migration issues.
- Inclusion of native material in-stream structures such as log vanes and/or toe wood to protect stream banks and maintain bank stabilities.

Ephemeral Streams – Restoration

- Channel will be reconstructed. Restored stream channel dimension will be sized to convey bankfull flows while maintaining stability with flows greater than bankfull spilling onto the floodplain.
- Vegetation will be planted to promote root mass along stream banks to provide stability.

• Inclusion of native material in-stream structures such as log vanes and/or toe wood to protect stream banks and maintain bank stabilities.

North Sulphur River Main Channel Restoration

- Channel will be reconstructed and stream channel dimension sized to convey design storm flows while maintaining stability with larger flows spilling onto the floodplain.
- Vegetation will be planted to promote root mass along stream banks to provide stability.
- Inclusion of native material in-stream structures such as rock vanes to protect stream banks and maintain bank stabilities.

Former North Sulphur River Restoration

- Channel will be reconstructed. Restored stream channel dimension will be sized to convey bankfull flows while maintaining stability with flows greater than bankfull spilling onto the floodplain.
- Vegetation will be planted to promote root mass along stream banks to provide stability.
- Inclusion of native material in-stream structures such as log vanes and/or toe wood to protect stream banks and maintain bank stabilities.
- 2. Channel Bottom Bank Stability (Note the score for this metric is the average of the scores of the left and right sides.)

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams	1 to 8	-		
Enhancement		2 to 8	4 to 8	6 to 8
Restoration		5 to 8	5 to 8	5 to 8
North Sulphur River Main Channel Restoration	0	9	9	9
Former North Sulphur River Restoration		9	9	9

	C	Optima	Ĺ	S	uboptim	al	Mar	ginal		Poor	
Channel Bottom Bank Stability	bank highl plant	iom 1/3 is gene y resis /soil m materi	erally stant atrix	SuboptimalBottom 1/3 of bank is generally resistant plant/soil matrix or material.765		Bottom 1/3 of bank is generally highly erodible material; plant/soil matrix compromised.		Bottom 1/3 of bank generally highly eroc material; plant/soil m severely compromis		rodible I matrix	
Grade (left)	10	9	8	7	6	5	4	3	2	1	0
Grade (right)	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement

- Vegetation will be planted to promote root mass along stream banks to provide stability.
- Minimal work such as localized grading and bank sloping and bend realignment to address erosion and channel migration issues.
- Inclusion of native material in-stream structures such as log vanes and/or toe wood to protect stream banks and maintain bank stabilities.

Ephemeral Streams – Restoration

- Channel will be reconstructed. Restored stream channel dimension will be sized to convey bankfull flows while maintaining stability with flows greater than bankfull spilling onto the floodplain.
- Vegetation will be planted to promote root mass along stream banks to provide stability.
- Inclusion of native material in-stream structures such as log vanes and/or toe wood to protect stream banks and maintain bank stabilities.

North Sulphur River Main Channel Restoration

- Channel will be reconstructed and stream channel dimension sized to convey design storm flows while maintaining stability with larger flows spilling onto the floodplain.
- Vegetation will be planted to promote root mass along stream banks to provide stability.
- Inclusion of native material in-stream structures such as rock vanes to protect stream banks and maintain bank stabilities.

Former North Sulphur River Restoration

- Channel will be reconstructed. Restored stream channel dimension will be sized to convey bankfull flows while maintaining stability with flows greater than bankfull spilling onto the floodplain.
- Vegetation will be planted to promote root mass along stream banks to provide stability.
- Inclusion of native material in-stream structures such as log vanes and/or toe wood to protect stream banks and maintain bank stabilities.

3. Water Clarity

	Baseline	EOC	EOM	At Maturity
	Range	Expected	Expected	Expected
		Range	Range	Range
Ephemeral Streams (Enhancement & Restoration)	0 to 4	0 to 5	0 to 5	0 to 5
North Sulphur River Main Channel Restoration	2	6	6	6
Former North Sulphur River Restoration		6	6	6

	(Optimal		5	Suboptima	al	Mar	ginal		Poor	
Water Clarity	visible feet (le colored) on s notice submerg	ored; ob at depth ess if slig); no oil urface; able filn	ijects n 3-6 ghtly sheen no n on	espec eve rapidly at dep have color;	sionally c ially after nt, but cle y; objects th 1.5-3 f slightly g no oil she ater surfac	storm ears visible t; may green een on	most of the visible to dep slow sect appear p bottom submerge	e cloudiness time; objects oth 0.5-1.5 ft; tions may ea-green; rocks or d objected with film.	appeara objects ft; slow n bright-g water pol mats, sur heavy	turbid or m ance most t visible to de noving wate reen; other lutants; floa face scum, / coat of foa . No water	he time; epth <0.5 er may be obvious ating algal sheen or am on
Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement & Restoration

- Water quality of the ephemeral channels is not expected to change significantly.
- Protected vegetated riparian buffers should attenuate nutrient inflow thereby limiting impacts to water clarity resulting from algal blooms.

North Sulphur River Main Channel Restoration

- Channel restoration is expected to contain water due to groundwater influence as well as runoff from the contributing watershed and occasional spills from the dam.
- Protected vegetated riparian buffers should attenuate nutrient inflow thereby limiting impacts to water clarity resulting from algal blooms.
- A score in the mid-suboptimal range is expected due to occasional cloudiness following rain events, especially with the colloidal nature of the local clay soils.

Former North Sulphur River Restoration

- Channel expected to contain water due to groundwater influence as well as runoff from the contributing watershed.
- Protected vegetated riparian buffers should attenuate nutrient inflow thereby limiting impacts to water clarity resulting from algal blooms.
- Occasional cloudiness is expected following rain events, especially with the colloidal nature of the local clay soils.

4. Nutrient Enrichment

	Baseline Range	EOC Expected	EOM Expected	At Maturity Expected
		Range	Range	Range
Ephemeral Streams (Enhancement & Restoration)	0 to 4	0 to 5	0 to 5	0 to 5
North Sulphur River Main Channel Restoration	1	7	7	7
Former North Sulphur River Restoration	-	7	7	7

	(Optimal		S	uboptim	nal	Marg	ginal		Poor	
Nutrient Enrichment	includes of mar macroph	iverse a commur low qua iy specie	quatic nity ntities es of e algal	sligh wate reac alga	irly clea ntly gree r along h; mode al growt m subst	enish entire erate h on	entire overabunda	ance of lush crophytes; lgal growth, uring warmer	water a de macrop severe a thick alg NO alg unstal	een, gray, c along entire inse stands hytes clog algal bloom al mats in s gae present ble substra vater = zero	e reach; s of stream; ns create stream or t due to te. No
Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement & Restoration

- Hydrology of the ephemeral channels is not expected to change significantly.
- Future scores are expected to be comparable to baseline scores.

North Sulphur River Main Channel Restoration

- The North Sulphur River Main Channel Restoration is expected to contain water due to groundwater influence and runoff from the contributing watershed.
- Protected riparian buffer zones will provide filtration of storm runoff and minimize nutrient inputs.

Former North Sulphur River Restoration

• The Former North Sulphur River Restoration is expected to contain water due to groundwater influence and runoff from the contributing watershed.

• Protected riparian buffer zones will provide filtration of storm runoff and minimize nutrient inputs.

5. Composition of Organic Matter

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams (Enhancement & Restoration)	0 to 5	1 to 5	2 to 7	4 to 8
North Sulphur River Main Channel Restoration	2	4	6	9
Former North Sulphur River Restoration		4	6	9

	C	ptimal		S	uboptim	al	Mar	ginal		Poor	
Composition of Organic Matter	of leave	/ consisters and of seding	wood	scarc de	es and v e; fine o bris with sedimen	rganic out	No leaves debris; co fine organ with se	barse and nic matter	in co (anaero	anic sedime lor and foul bic) or no s t due to exo scouring	odor ediment
Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement & Restoration

- Establishment of protected riparian corridors of multiple strata is expected to provide substantial input of leaves and woody debris to the channels on a seasonal basis.
- Enhancement designs are expected to develop stable channels with in-channel structures that would facilitate retention of leaves and woody debris.
- Restoration designs are expected to develop stable channels with in-channel structures and incorporate structures that will facilitate retention of leaves and woody debris.

North Sulphur River Main Channel Restoration

- Establishment of protected riparian corridor of multiple strata along the restored channel is expected to provide substantial input of leaves and woody debris to the channel on a seasonal basis.
- Restoration design is expected to develop a stable channel with in-channel structures that will facilitate retention of leaves and woody debris.
- The larger watershed and riparian corridor developed is expected to provide a larger volume of leaves and woody debris input and the larger channel will have more capacity for retention.

Former North Sulphur River Restoration

- Establishment of protected riparian corridor of multiple strata along the restored channel is expected to provide substantial input of leaves and woody debris to the channel on a seasonal basis.
- Restoration design is expected to develop a stable channel with in-channel structures that will facilitate retention of leaves and woody debris.
- The larger watershed and riparian corridor developed is expected to provide a larger volume of leaves and woody debris input and the larger channel will have more capacity for retention.

6. Land Use Pattern (Note the score for this metric is the average of the scores of the left and right sides.)

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams (Enhancement & Restoration)	3 to 6	5 to 9	7 to 9	9 (no range)
North Sulphur River Main Channel Restoration	2.5	9	9	9
Former North Sulphur River Restoration		9	9	9

		Optimal			Suboptima		Marg	ginal		Poor	
Land Use Pattern	of fores prairie	st, pristine	bed, consisting , pristine native and/or natural etlands.		ent pastur dlots and w row crop	swamps,	Mixed row crops and pasture; some wooded areas may be present but as isolated patches			iinly r crops	
Grade (left)	10	9	8	7	6	5	4	3	2	1	0
Grade (right)	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement & Restoration

- Riparian corridors with multiple strata will be developed through plantings.
- Native prairie plantings will be established between the riparian corridor and the conservation easement boundary.
- Areas will be excluded from agricultural practices such as farming or livestock rearing.
- These areas are anticipated to develop into undisturbed forests with patches of native prairie interspersed similar to what is typically seen in undisturbed riparian systems associated with the Blackland Prairie Ecosystem.

North Sulphur River Main Channel Restoration

- Riparian corridors with multiple strata will be developed through plantings.
- These areas will be fenced and undisturbed by agricultural practices such as farming or livestock rearing.
- These areas are anticipated to develop into undisturbed forests with patches of native prairie interspersed similar to what is typically seen in undisturbed riparian systems associated with the Blackland Prairie Ecosystem.

Former North Sulphur River Restoration

- Extensive riparian corridors with multiple strata will be developed through plantings.
- These areas will be fenced and undisturbed by agricultural practices such as farming or livestock rearing.
- These areas are anticipated to develop into undisturbed forests with patches of native prairie interspersed similar to what is typically seen in undisturbed riparian systems associated with the Blackland Prairie Ecosystem.

7. *Riparian Buffer Zone Width* (Note the score for this metric is the average of the scores of the left and right sides.)

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams (Enhancement & Restoration)	2 to 8	3 to 8	6 to 8	9 (no range)
North Sulphur River Main Channel Restoration	2.5	5	7	9
Former North Sulphur River Restoration		5	7	9

		Optima	I	9	Suboptima		Marg	ginal		Poor	
Riparian Zone Width (from steam edge to field)	zone 2 ch 2 ch with 1 or ta hum	th of rip >18 met annel w trees, sł all grass aan activ not imp zone.	ers (1- vidths nrubs, ses), vities	18 me chann shrut huma	f riparian z ters (1/2-1 el width w os, or gras n activities ly impacte	active /trees, ses), s have		rs (1/3-1/2 nnel width , impacted	6 m vegetat active little rip	of riparian eters (nat tion less t channel parian veg human ac	tural han 1/3 width), jetation
Grade (left)	10	9	8	7	7 6 5			3	2	1	0
Grade (right)	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement & Restoration

• Protected riparian buffer zone will be established along all mitigation channels which will include a minimum 18 meters (60 feet) of riparian buffer zone on either side of the stream meander belt width appropriate for each channel. Both the riparian buffer and meander belt width will be planted to establish multiple strata of vegetation.

North Sulphur River Main Channel Restoration

• Protected riparian buffer zone would be established along all mitigation channels which will include a minimum 18 meters (60 feet) of riparian buffer zone on either side of the stream meander belt width appropriate for the channel. Both the riparian buffer and meander belt width will be planted to establish multiple strata of vegetation. Refer to Figure 9-1 in Section 9 for illustration of Stream Mitigation Area.

Former North Sulphur River Restoration

 Protected riparian buffer zone would be established along all mitigation channels which will include a minimum 18 meters (60 feet) of riparian buffer zone on either side of the stream meander belt width appropriate for the channel. Both the riparian buffer and meander belt width will be planted to establish multiple strata of vegetation. Refer to Figure 9-1 in Section 9 for illustration of Stream Mitigation Area. 8. *Riparian Buffer Zone Vegetation Protection/Completeness* (Note the score for this metric is the average of the scores of the left and right sides.)

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams (Enhancement & Restoration)	1 to 6	2 to 6	5 to 7	9 (no range)
North Sulphur River Main Channel Restoration	3	2	6	9
Former North Sulphur River Restoration		2	6	9

	(Optimal		S	Suboptima	al	Mar	ginal		Poor	
Riparian Zone Vegetation Protection / Completeness	mature ti prairie marsh p zone inta from gra	e grasses olants, rip	hrubs, s, or parian ruption	vege young chani tre disrupt breal	% strean etation, m species nel and m ees behir tion evide ks occurr ervals of : meters.	nixed along nature nd; ent with ing at	vegetation grasses a young tre- species frequent gullies a	treambank n of mixed nd sparse e or shrub ; breaks with some nd scars) meters.	stream cover mos grass shru densi scarre	ss than 5 bank veg age cons stly of pas es, few tr ubs; low p ty; bank o d with gu ng its len	jetation sisting sture rees & blant deeply llies all
Grade (left)	10	9	8	7	6	5	4	3	2	1	0
Grade (right)	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement & Restoration

• Protected riparian corridors will be established along ephemeral mitigation channels through plantings of native species of trees, shrubs, grasses, and forbs. The plantings will cover the full riparian buffer zone width as described above. Composition of the riparian corridor will include multiple strata. Non-native/invasive species shall not comprise more than 2% of the woody vegetation and/or more than 5% of the herbaceous cover.

North Sulphur River Main Channel Restoration

 Protected riparian corridors will be established along the North Sulphur River Main Channel Restoration reach through plantings of native species of trees, shrubs, grasses, and forbs. The plantings will cover the full riparian buffer zone width as described above. Composition of the riparian corridor will include multiple strata. Non-native/invasive species shall not comprise more than 2% of the woody vegetation and/or more than 5% of the herbaceous cover.

Former North Sulphur River Restoration

 Protected riparian corridors will be established along the Former North Sulphur River Restoration channel through plantings of native species of trees, shrubs, grasses, and forbs. The plantings will cover the full riparian buffer zone width as described above. Composition of the riparian corridor will include multiple strata. Non-native/invasive species shall not comprise more than 2% of the woody vegetation and/or more than 5% of the herbaceous cover.

Habitat Functions

1. Flow Regime

-	Baseline	EOC	EOM	At Maturity
	Range	Expected	Expected	Expected
		Range	Range	Range
Ephemeral Streams (Enhancement & Restoration)	0 to 2	1 to 2	1 to 2	1 to 2
North Sulphur River Main Channel Restoration	3	7	7	7
Former North Sulphur River Restoration		7	7	7
Flow Regime				

Flow Regime											
Туре	Per	enni	ial	Intermitte	nt w/ Peren	nial Pools	Intern	nittent	Epl	heme	eral
Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement & Restoration

- Scoring comparable to baseline scores but channel form is expected to improve.
- Channel displays good channel form and contains water: score = 2
- Channel displays good channel form and no water: score = 1

North Sulphur River Main Channel Restoration⁵

- Flow will consist of contributions from the immediate watershed, lateral infiltration as groundwater inputs, and occasional spills from the dam.
- Retention of water aided by restored stream being located on low-permeability fill and through improved pool geometry, including the creation of deep pools.
- Based on designs and hydrologic modeling, pools will retain water most of the year.

Former North Sulphur River Restoration

 Preliminary hydrologic analyses⁶ indicate that during normal climatic conditions, this channel will retain water year-round throughout most of its length especially within deep pools. Additional detailed hydrologic analyses⁷ support the findings from the preliminary hydrologic analyses study.

⁵ Freese and Nichols, Inc., Lake Ralph Hall – Main Channel North Sulphur River Stream Restoration Basis of Design Report, June 2019.

⁶ Robert J. Brandes Consulting. Technical Memorandum – Preliminary Analysis of North Sulphur River Restored Channel as Perennial Stream. February 24, 2017.

⁷ Ecosystem Restoration and Planning LLC. Technical Memorandum Number 3, July 2019.

2. Epifaunal Substrate/Available Cover

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams	1 to 6			
Enhancement		1 to 4	2 to 4	2 to 5
Restoration		3 to 5	3 to 5	3 to 5
North Sulphur River Main Channel Restoration	1	9	9	9
Former North Sulphur River Restoration		9	9	9

		Optimal		S	Suboptima	al	Mar	ginal		Poor	
	Within str	eam bed,	greater				Within strea	am bed, 10-	Les	s than ′	10%
	than 50% c	coverage b	y stable	Within	stream b	ed, 30-	30% covera	ge by stable	habi	itat feat	ures
	habitat feat	ures, favo	rable for	50% co	verage b	y stable	habitat featu	res favorable	pres	sent; lao	ck of
	stream fa	unal colon	ization	hab	oitat featu	ires	for strea	m faunal	habita	at is ob	vious;
Epifaunal	and/or fish	/amphibia	n cover.	favorable for stream			colonizati	on and/or	substrate		
Substrate /	Most hab	itat feature	es non	faunal colonization			fish/amphi	unstable or			
Available	transient	t. Feature	s may	and/or fish/amphibian		habitat availa	lacking; concrete				
Cover		nags, subr		cover. Many habitat		less than desirable,		lined channels.			
	logs, unde		· ·	feature	features not transient.		substrate may be		Habitat features		
	cobble, roo	cks, persis	tent leaf	(Se	ee Excell	ent	frequently disturbed.		and	pools b	uried
		ols and gli			gory for h		· · · · · · · · · · · · · · · · · · ·	ent Category		r lackin	U ,
	other stable			feature components.)			for habita	at feature	channel bottom		
	to allow	w coloniza	tion			components.)		may be flat.			
Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement

• Anticipate some increase in quantity and variety of natural structures within the enhanced streams due to proposed incorporation of large woody debris and instream structures in localized areas.

Ephemeral Streams – Restoration

• Anticipate increase in quantity and variety of natural structures within the restored streams due to proposed incorporation of large woody debris and instream structures as design elements in natural channel design.

North Sulphur River Main Channel Restoration

- Anticipate substantial increase in quantity and variety of natural structures within the restored channel due to proposed incorporation of instream structures as design elements in the natural channel design.
- The North Sulphur River Main Channel Restoration reach is expected to retain water within the channel and provide increased quantity and variety of natural structure.

Former North Sulphur River Restoration

- Anticipate substantial increase in quantity and variety of natural structures within the restored channel due to proposed incorporation of large woody debris, pools, and other features as design elements in the natural channel design.
- The Former North Sulphur River Restoration channel is expected to retain water within the channel and therefore the increased quantity and variety of natural structure.

3. Stream Bottom Substrate

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams (Enhancement & Restoration)	1 to 4	1 to 6	1 to 6	1 to 6
North Sulphur River Main Channel Restoration	1	6	6	6
Former North Sulphur River Restoration		6	6	6

	(Optimal			Suboptima		Mar	ginal		Poor	
Stream Bottom Substrate	materials firm sand mats a		vel and nt; root erged	or cla domina	of soft sar ay; mud ma nt; some ro merged ve present.	ay be oot mats	sand botto no root subm	or clay or om; little or mat; no erged tation.	bedı mat c	d pan cla rock; no or subme egetatio	root erged
Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement

- Stream bottom substrate for most streams observed within the mitigation area currently consists of uniform clay or mud.
- Some organic bottom substrate observed seasonally in areas with riparian vegetation along and overhanging streams.
- Stream bottom substrate will remain as uniform clay or mud with root mat development including enhanced wooded riparian corridors.
- Organic deposition will continue to occur seasonally.

Ephemeral Streams – Restoration

- Stream bottom substrate for restored channels will remain as uniform clay or mud with root mat development as planted riparian corridors mature.
- Organic deposition will occur seasonally as riparian plantings mature.

North Sulphur River Main Channel Restoration

- In situ soils consist of a mixture of cobble, gravels, sands, and fine grains. Accordingly, stream bottom substrate should consist of a mixture of soft sand, mud, or clay.
- Organic deposition will occur seasonally as riparian plantings mature.

Former North Sulphur River Restoration

- The Former North Sulphur River Restoration will be designed with a stream bottom consisting of a mixture of sand, mud or clay, with root mats developing as well as submerged vegetation.
- Organic deposition would occur seasonally as riparian plantings mature.

4. Pool Variability

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams	0 to 3			
Enhancement		1 to 4	2 to 4	2 to 4
Restoration		2 to 4	2 to 4	2 to 6
North Sulphur River Main Channel Restoration	1	9	9	9
Former North Sulphur River Restoration		8	8	8

		Optimal Suboptimal Marginal					Poor				
Pool	Even mix of large-shallow,			Majority of pools			Shallow p	Majority of pools			
Variability	large-deep, small-shallow,		large-	deep; ve	ry few	more prevalent than		small-shallow or			
	small-deep pools present		-	shallow.	-	deep pools		pools absent		ent	
Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement

- Natural channel design plans include instream structure placement, localized grading and bank sloping, bend realignment, and/or supplemental plantings to achieve channel stability and bed form diversity.
- Placement of instream structures will induce downstream scour pools.
- For streams with sinuosity less than 1.2, pool spacing and placement will primarily be driven by the placement of instream structures.
- For streams with design sinuosity greater than 1.2, pool spacing and placement will be driven by a combination of meander geometry and structure placement.

Ephemeral Streams – Restoration

- Natural channel design plans include instream structure placement, grading to achieve appropriate channel sinuosity and bank sloping to achieve channel stability and bed form diversity, and riparian plantings to establish riparian buffer zones.
- Placement of instream structures will induce downstream scour pools.
- For streams with sinuosity less than 1.2, pool spacing and placement will primarily be driven by the placement of instream structures.
- For streams with design sinuosity greater than 1.2, pool spacing and placement will be driven by a combination of meander geometry and structure placement.

North Sulphur River Main Channel Restoration

• Natural channel design for the North Sulphur River Main Channel Restoration will include a mixture of different sizes and depths of pools which are expected to retain water for extended periods.

Former North Sulphur River Restoration

• Natural channel design for the Former North Sulphur River Restoration will include a mixture of different sizes and depths of pools which are expected to retain water for extended periods.

5. Sediment Deposition/Scouring

	Baseline	EOC	EOM	At Maturity
	Range	Expected	Expected	Expected
		Range	Range	Range
Ephemeral Streams (Enhancement & Restoration)	0 to 8	2 to 8	4 to 8	4 to 8
North Sulphur River Main Channel Restoration	1	8	8	8
Former North Sulphur River Restoration		9	9	9

	0	ptimal		5	Suboptima	al	Mar	ginal		Poor	
Sediment Deposition / Scouring	by s	of cha n affe scour positio	cted or	5-30% affected by scour or deposition; Scour at constrictions and where grades steepen. Some deposition in pools		or depositio and scour at constrictions	,	bottom i change Pools r due to h	than 50% in a state of e nearly ye minimal or leavy depo essive scou	of flux or earlong. absent osition or	
Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement

- Conditions for the enhanced ephemeral streams are expected to express suboptimal conditions due to the steeper grades encountered in these headwater streams.
- Natural channel design principles will be utilized to incorporate instream structure placement, localized grading and bank sloping, bend realignment, and/or supplemental plantings to achieve appropriate grade control and bed form diversity.

Ephemeral Streams – Restoration

- Principles of natural channel design will be utilized to design channels with appropriate channel dimension, channel pattern, and channel profile so that deposition and scouring are provided as stable bed form diversity.
- Additional grade control is provided for the restored ephemeral streams compared to the enhanced ephemeral streams.

North Sulphur River Main Channel Restoration

• Natural channel design utilized for the North Sulphur River Restoration reach enables optimal conditions of negligible scour or deposition to be achieved.

Former North Sulphur River Restoration

• Natural channel design utilized for the Former North Sulphur River Restoration reach enables optimal conditions of negligible scour or deposition to be achieved.

6. Channel Flow Status

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams (Enhancement & Restoration)	0 to 6	0 to 6	0 to 6	0 to 6
North Sulphur River Main Channel Restoration	2	6	6	6
Former North Sulphur River Restoration		6	6	6

	(Optimal		S	uboptima	al	Marg	ginal		Poor	
Channel	Water re	aches the	e base	Water	fills >75%	6 of the	Water fills 2	5-75% of the	Very I	ttle water	in the
Flow	of both	lower ba	anks;	channel; or <25% of			available cha	annel and/or	channel and mostly		
Status	<5%	of chann	nel	channel substrate is		riffle subs	trates are	pres	ent in star	nding	
	substra	te is exp	osed	exposed		mostly e	exposed	pools;	or stream	n is dry	
Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement

- Ephemeral streams are expected to retain some water within scour pools downstream of instream structures for a few days (or weeks), but channels would be primarily dry except immediately after rain events.
- Projected future scores would remain comparable to baseline scores.
- If water occupies the channel, it would be measured and recorded.

Ephemeral Streams – Restoration

- Restored ephemeral streams are also expected to retain some water within scour pools downstream of instream structures for a few days (or weeks), but channels will be primarily dry except immediately after rain events.
- Projected future scores will remain comparable to baseline scores with minimal improvement expected.
- If water occupies the channel, it will be measured and recorded.

North Sulphur River Main Channel Restoration

• Water will be retained for extended periods in the North Sulphur River Main Channel Restoration reach due to groundwater inflow along the alluvium-bedrock interface.

Former North Sulphur River Restoration

• Water will be retained for extended periods in the Former North Sulphur River Restoration reach due to groundwater inflow supplemented by surface runoff.

7. Channel Alteration

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams	1 to 8			
Enhancement		2 to 8	4 to 8	6 to 8
Restoration		8 (no range)	8 (no range)	8 (no range)
North Sulphur River Main Channel Restoration	1	9	9	9
Former North Sulphur River Restoration		9	9	9

	C	Optimal			Suboptima		Mar	ginal		Poor	
Channel Alteration	alteration absent norma strear pattern. storm	t or mini Il and st m mean	edging imal; able ider ion by puts	chann usu structur evidenc (I.e., cha present, and stab recen presen	ne alteration elization pr ally adjacer es, (such a ents or cul e of past al nnelization but stream ility have re t alteration t. Minor alt ormwater o inputs.	esent, nt to s bridge verts); teration,) may be n pattern covered; is not eration	channeliza extensive; e (including s shoring struct on both ba stable streat pattern has n Alteration fro inputs may b 40-80% of s	tion or mbankments poil piles) or tures present nks; normal am meander not recovered. m stormwater pe extensive. stream reach red.	gabi concr or chanr habita storm input of the	s shored on, ripra ete. Co riprap lir els. Ins at signifi altered b water or s. Over stream altered.	p, or ncrete ned stream cantly y other 80%
Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement

• Enhancement of these channels includes instream structure placement, localized grading and bank sloping, bend realignment and supplemental plantings as needed to enhance stability and function.

Ephemeral Streams – Restoration

- Natural channel design and geomorphology principles were be used to develop appropriate channel form and sinuosity.
- Normal frequency of hydrological connection between restored channels and their floodplains will be achieved.
- Stable riffle slopes were determined through sediment transport analyses, and when valley/stream gradient exceeded these predicted stable slopes, grade control structures, such as logs and rock riffles, were be incorporated.
- Protected wooded riparian corridors aide with grade control over time with tree roots and debris jams as examples.

- Natural channel design and geomorphology principles were used to develop appropriate channel form and sinuosity for the North Sulphur River Main Channel restoration.
- Pattern and profile designs were based on the reference reach information from the project watershed, reference reach information from similar streams in other regions, and professional judgement gained from past restoration projects.
- Stable riffle slopes were determined through sediment transport analyses, and grade control structures, such as rock vanes, were incorporated to account for flood flows.

• Normal frequency of hydrological connection between restored channel and its floodplain will be achieved.

Former North Sulphur River Restoration

- Natural channel design and geomorphology principles were used to develop appropriate channel form and sinuosity for the Former North Sulphur River Restoration.
- Pattern and profile designs were based on the reference reach information from the project watershed, reference reach information from similar streams in other regions, and professional judgement gained from past restoration projects.
- Stable riffle slopes were determined through sediment transport analyses, and when valley/stream gradient exceeded these predicted stable slopes, grade control structures, such as logs and rock riffles, were incorporated.
- Normal frequency of hydrological connection between restored channel and its floodplain will be achieved.

8. Channel Sinuosity

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams	1 to 5			
Enhancement		1 to 5	1 to 5	1 to 5
Restoration		1 to 5	1 to 5	1 to 5
North Sulphur River Main Channel Restoration	1	3	3	3
Former North Sulphur River Restoration		5	5	5

		Optimal		S	uboptim	al	Marg	ginal		Poor	
Channel Sinuosity	channel braidi in coastal pla areas. This j	3 to 4 times I straight line. ng is conside ins and other	onger than (Note - red normal low-lying not easily	strear strear times	bends ir m increas n length longer th a straig	se the 2 to 3 nan if it	The ben stream i the strea times lor if it wa straig	ncrease im 1 to 2 iger than as in a	wat been	nnel stra terway l channe long dis	has elized
Grade	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement

- Major modifications are not proposed for enhancement streams.
- Projected future scores are comparable to the baseline scores.

Ephemeral Streams – Restoration

• Restored streams were designed with sinuosities that mimic stable reference reaches, as described in EPR Technical Memorandum 2 (**Appendix F**).

North Sulphur River Main Channel Restoration

• Formal design analyses of hydraulics, hydrology, and sediment transport indicated a target design sinuosity of 1.2 was appropriate for the reach.

Former North Sulphur River Restoration

• Formal design analyses of hydrology, topography, and sediment transport indicated design sinuosities greater than 2.0 for the reach.

9. *Bank Stability* (Note the score for this metric is the average of the scores of the left and right sides.)

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams	1 to 8			
Enhancement		2 to 8	4 to 8	6 to 8
Restoration		6 to 8	7 to 8	8 (no range)
North Sulphur River Main Channel Restoration	2	9	9	9
Former North Sulphur River Restoration		9	9	9

		Optima		9	Suboptin	nal	M	arginal		Poor	
Bank Stability	evider bank f min ba perer to wate und (sor outsi ber rece	anks stal ace of ero ailure ab imal; (<5 nk affect nial veg erline; no dercut ba ne erosio de of me de of me de of Me ads O.K. ently exp ; no rece falls;	osion or issent or is% of ed), etation o raw or anks on on eander); no osed	infre are most 5-30 reac minor bank peren to wa pla expo	erately s equent, as of ere y heale 2% of ba h has ar erosion a underc nial veg tterline i ces; rec sed tree but pre	small osion d over. ank in reas of a and/or sutting; getation n most sently e roots	perennial waterline s scoured lateral eros by hard po outcrops) a elsewhere; in reach erosio undercut exposed tre root hairs erosion p	ely unstable; vegetation to sparse (mainly or stripped by sion), bank held ints (trees, rock nd eroded back 30-60% of bank has areas of n and bank tting; recently ee roots and fine common; high otential during loods	vegeta severa ba expo com an ur comm area freque sectii	ble; no pe tion at wa e erosion nks; rece bsed tree mon; tree d/or seve dercut tre on; many us; "raw" a ent along s ons and b bovious ba hing; 60-1 c has eros scars.	aterline; of both ntly roots e falls rely ees eroded areas straight bends; nk 00% of
Grade (left)	10	9	8	7	6	5	4	3	2	1	0
Grade (right)	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement

- Vegetation will be planted to promote root mass along stream banks to provide stability.
- Minimal work such as localized grading and bank sloping and bend realignment to address erosion and channel migration issues.
- Inclusion of native material in-stream structures such as log vanes and/or toe wood to protect stream banks and maintain bank stabilities.

Ephemeral Streams – Restoration

- Channel will be reconstructed. Restored stream channel dimension will be sized to convey bankfull flows while maintaining stability with flows greater than bankfull spilling onto the floodplain.
- Vegetation will be planted to promote root mass along stream banks to provide stability.Inclusion of native material in-stream structures such as log vanes and/or toe wood to protect stream banks and maintain bank stabilities.

- Channel will be reconstructed and stream channel dimension sized to convey design storm flows while maintaining stability with larger flows spilling onto the floodplain.
- Vegetation will be planted to promote root mass along stream banks to provide stability.
- Inclusion of native material in-stream structures such as rock vanes to protect stream banks and maintain bank stabilities.

Former North Sulphur River Restoration

- Channel will be reconstructed. Restored stream channel dimension will be sized to convey bankfull flows while maintaining stability with flows greater than bankfull spilling onto the floodplain.
- Vegetation will be planted to promote root mass along stream banks to provide stability.
- Inclusion of native material in-stream structures such as log vanes and/or toe wood to protect stream banks and maintain bank stabilities.
- **10.** *Vegetative Protection* (Note the score for this metric is the average of the scores of the left and right sides.)

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams (Enhancement & Restoration)	1 to 7	2 to 6	5 to 7	9 (no range)
North Sulphur River Main Channel Restoration	3.5	2	6	9
Former North Sulphur River Restoration		2	6	9

		Ontimal			ubantim	al	Mara	inal		Deer	
		Optimal		5	uboptim	ai	Marg	inai		Poor	
Vegetation Protection	stream and imm zones c vegeta trees, ur or macroph disru grazi minima almost a	han 90% hbank su mediate i overed b ation, inc nderstory nonwoo hytes; ve ption thru- ng or mo l or not e all plants ow natur	rfaces riparian y native luding shrubs, dy getative ough wing evident; allowed	strean cove vegetatii of pla represe evident full plant to any g than o potenti	nts is no ented; dis but not a growth	rfaces ative ne class t well- sruption affecting potential nt; more of the stubble	50-70% stream surfaces or vegeta disruption patches of or closely vegetation less than of the poten stubble remai	bbank bovered by ation; obvious; bare soil cropped common; one-half of tial plant height	stream c vegeta of s vege high; v been centim	han 50% nbank sur overed by tion; disr streamba tation is vegetatio removed eters or l rage stub height.	faces / uption nk very n has to 5 ess in
Grade (left)	10	9	8	7	6	5	4	3	2	1	0
Grade (right)	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement & Restoration

- Protected riparian buffer zones and enhancement plantings consisting of native vegetation and including canopy trees, understory shrubs, and herbaceous ground cover to establish stable stream banks.
- Non-native/invasive species shall not comprise more than 2% of the woody vegetation and/or more than 5% of the herbaceous cover.
- Acceptable woody species will consist of at least four native species with one species not comprising more than 35% of the canopy cover.

- Protected riparian buffer zones and enhancement plantings consisting of native vegetation and including canopy trees, understory shrubs, and herbaceous ground cover to establish stable stream banks.
- Non-native/invasive species shall not comprise more than 2% of the woody vegetation and/or more than 5% of the herbaceous cover.
- Acceptable woody species will consist of at least four native species with one species not comprising more than 35% of the canopy cover.

Former North Sulphur River Restoration

- Protected riparian buffer zones and enhancement plantings consisting of native vegetation and including canopy trees, understory shrubs, and herbaceous ground cover to establish stable stream banks.
- Non-native/invasive species shall not comprise more than 2% of the woody vegetation and/or more than 5% of the herbaceous cover.
- Acceptable woody species will consist of at least four native species with one species not comprising more than 35% of the canopy cover.
- **11.** *Riparian Buffer Zone* (Note the score for this metric is the average of the scores of the left and right sides.)

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams (Enhancement & Restoration)	2 to 8	3 to 8	6 to 8	9 (no range)
North Sulphur River Main Channel Restoration	2.5	5	7	9
Former North Sulphur River Restoration		5	7	9

		Optimal		5	Suboptima	al	Mar	ginal		Poor	
Riparian Zone	activitie lots, ro cuts, la	ieters; h s (l.e., j adbeds,	uman parking , clear- crops)	SuboptimalWidth of riparian zone 12- 18 meters; human activities have impacted zone only minimally).76767657			6-12 mete activitie	parian zone ers; human es have one a great eal.	<6 me riparia	of riparia eters; little n vegetat iman activ	e or no ion due
Grade (left)	10	9	8	7	6	5	4	3	2	1	0
Grade (right)	10	9	8	7	6	5	4	3	2	1	0

Ephemeral Streams – Enhancement & Restoration

- Protected riparian buffer zones greater than 18 meters wide will be provided for all mitigation streams. Therefore, this metric which is comparable to the water quality riparian buffer zone width metric (see water quality functions #7) will score optimal for all streams.
- Non-native/invasive species shall not comprise more than 2% of the woody vegetation and/or more than 5% of the herbaceous cover.
- Acceptable woody species will consist of at least four native species with one species not comprising more than 35% of the canopy cover.

- Protected riparian buffer zones greater than 18 meters wide will be provided for all mitigation streams. Therefore, this metric which is comparable to the water quality riparian buffer zone width metric (see water quality functions #7) will score optimal for all streams.
- Non-native/invasive species shall not comprise more than 2% of the woody vegetation and/or more than 5% of the herbaceous cover.
- Acceptable woody species will consist of at least four native species with one species not comprising more than 35% of the canopy cover.

Former North Sulphur River Restoration

- Protected riparian buffer zones greater than 18 meters wide will be provided for all mitigation streams. Therefore, this metric which is comparable to the water quality riparian buffer zone width metric (see water quality functions #7) will score optimal for all streams.
- Non-native/invasive species shall not comprise more than 2% of the woody vegetation and/or more than 5% of the herbaceous cover.
- Acceptable woody species will consist of at least four native species with one species not comprising more than 35% of the canopy cover.
- **12.** *Riparian Habitat Condition* (Note the score for this metric is the average of the scores of the left and right sides.)

	Baseline Range	EOC Expected Range	EOM Expected Range	At Maturity Expected Range
Ephemeral Streams (Enhancement & Restoration)	1 to 6	2 to 6	4 to 6	7 to 8
North Sulphur River Main Channel Restoration	3	2	5	7
Former North Sulphur River Restoration	-	2	5	7

	r								1		
		Optimal			Suboptim	al	Mar	ginal		Poor	
Riparian Habitat Condition	inches) (tree (Additi may i shrub, leaf mosses/ debris.) end of >2 ado present.	canopy of onal fores include: s herbaced litter inclu lichens a) Score at Excellent ditional lat	with >60% cover. st layers apling, ous, and uding nd woody it he high range if yers are low end if yers are	inche 30% to cover Catego of ac layers high er if >2 a laye Score additio are pre area	. (See E) ory for ey dditional s.) Score ad of Goo additiona rs are pro at low e onal fores	nt, with e canopy ccellent camples forest e at the od range l forest essent. nd if <1 et layers cutover umps	inches) prese tree canopy Excellent C examples of forest layers. high end of F additional present. Sco if <1 addition present. OR of non-main naturalize	um (dbh>3 ent, with <30% cover. (See Category for of additional) Score at the air range if >2 layers are ore at low end hal layers are area consists ntained and ed dense and/or woody tation.	im sp crop c s mo he area s activ	ee stratu absent; pperviou urfaces lands, n poil lands; ulvertec streams, powed ar aintaine rbaceou s, denu urfaces vely graz sture, ai	s, nine s, l d d us ded , zed
Grade (left)	10	9	8	7	6	5	4	3	2	1	0
Grade (right)	10							3	2	1	0

Ephemeral Streams – Enhancement & Restoration

- Riparian plantings proposed within the mitigation plan will establish riparian habitat conditions to include at a minimum a tree stratum with trees greater than three inches at diameter breast height (dbh) at the end of the 7-year monitoring period. The tree canopy cover will be on track to be between 50-60% coverage at maturity. The riparian areas will also include strata consisting of the following:
 - Saplings
 - o Shrubs
 - Herbaceous Vegetation
 - o Leaf Litter
- Non-native/invasive species shall not comprise more than 2% of the woody vegetation and/or more than 5% of the herbaceous cover.

• Acceptable woody species will consist of at least four native species with one species not comprising more than 35% of the canopy cover.

North Sulphur River Main Channel Restoration

- Riparian plantings proposed within the mitigation plan will establish riparian habitat conditions to include at a minimum a tree stratum with trees greater than three inches at diameter breast height (dbh) at the end of the 7-year monitoring period. The tree canopy cover will be on track to be between 50-60% coverage at maturity. The riparian areas will also include strata consisting of the following:
 - o Saplings
 - o Shrubs
 - Herbaceous Vegetation
 - o Leaf Litter
- Non-native/invasive species shall not comprise more than 2% of the woody vegetation and/or more than 5% of the herbaceous cover.
- Acceptable woody species will consist of at least four native species with one species not comprising more than 35% of the canopy cover.

Former North Sulphur River Restoration

- Riparian plantings proposed within the mitigation plan will establish riparian habitat conditions to include at a minimum a tree stratum with trees greater than three inches at diameter breast height (dbh) at the end of the 7-year monitoring period. The tree canopy cover will be on track to be between 50-60% coverage at maturity. The riparian areas will also include strata consisting of the following:
 - o Saplings
 - o Shrubs
 - Herbaceous Vegetation
 - o Leaf Litter
- Non-native/invasive species shall not comprise more than 2% of the woody vegetation and/or more than 5% of the herbaceous cover.
- Acceptable woody species will consist of at least four native species with one species not comprising more than 35% of the canopy cover.

D. Stream Classification

The final component in calculating FCU scores and in the determination of functional credits is the stream classification multiplier. There are three general classifications of streams in SWAMPIM as follows: (1) ephemeral, (2) intermittent, and (3) perennial. SWAMPIM further separates intermittent streams into two categories: intermittent without perennial pools and intermittent with perennial pools. In the calculation of FCU's, SWAMPIM applies a multiplication factor in accordance with the stream's respective flow regime. This multiplication factor is related to the extent of the riparian corridor generally supported by each classification of stream and corresponding habitat area influenced.

Intermittent streams can be highly variable ranging from some that have groundwater input that sustains flow for a few days to a few weeks to some with sustained flow for most of the year and substantial pools that provide refuge for aquatic organisms during periods of no flow. Within the protocol, SWAMPIM is silent on the differentiator between intermittent streams with and without

perennial pools. The biotic community will vary among temporary waters such as intermittent streams with duration of hydroperiod and timing of the hydrologic cycle⁸. Intermittent streams with perennial pools offer a higher functional quality when compared to intermittent streams without perennial pools. Intermittent streams with perennial pools within the North Sulphur River watershed provide a host of ecosystem benefits such as:

- In-stream water storage and source to provide habitat for flora and fauna;
- Recharge for alluvial groundwater aquifers;
- Support for riparian vegetative communities; and
- Relatively stable features that supports biological community recovery following an ecosystem stressor.

Accordingly, intermittent streams with perennial pools are differentiated from intermittent streams without perennial pools. The following SWAMPIM multiplication factors for stream classification are adopted, which includes recognition of intermittent streams with perennial pools:

Ephemeral streams	0.00125
Intermittent streams without perennial pools	0.00250
Intermittent streams with perennial pools	0.00315
Perennial streams	0.00380

In the determination of credits, all streams are classified as ephemeral except for the restored main channel North Sulphur River and the restored former channel North Sulphur River, each of which are classified as intermittent with perennial pools. Justification for classification of the restored main channel North Sulphur River is provided in the Basis of Design Report⁹ for that stream. A copy of this memorandum in provided **Appendix H**. Justification for classification of the restored former channel North Sulphur River is provided in EPR Technical Memorandum Number 3¹⁰. A copy of this memorandum is also provided in **Appendix H**.

⁸ Fritz, K.M., Johnson, B.R., and Walters, D.M. 2006. Field Operations Manual for Assessing the Hydrologic Permanence and Ecological Condition of Headwater Streams. EPA/600/R-06/126. U.S. Environmental Protection Agency, Office of Research and Development, Washington DC.

 ⁹ Freese and Nichols, Inc., Lake Ralph Hall – Main Channel North Sulphur River Stream Restoration Basis of Design Report, June 2019
 ¹⁰ Ecosystem Restoration and Planning LLC. Technical Memorandum Number 3, July 2019.

TABLE G-1 LAKE RALPH HALL SUMMARY OF PROPOSED FUNCTIONAL CAPACITY OF STREAMS WITHIN MITIGATION ZONES A, B, AND C¹

Mitigation Zone	Mitigation Type	Stream Type	Proposed Total SAR Length (Linear Feet) ²	Proposed Functional Capacity Unit (FCU) Total At end of Construction ³	Proposed Stream Functional Capacity Unit (FCU) Total At end of Monitoring ³	Proposed Stream Functional Capacity Unit (FCU) Total At Maturity ³
А	Enhancement	Ephemeral	15,255	20.14	23.72	28.62
А	Restoration	Intermittent / Perennial Pools	17,894	110.35	120.78	130.36
А	Restoration	Ephemeral	86,615	135.92	157.35	177.23
А	Re-Establishment	Ephemeral	19,787	29.94	34.81	39.33
В	Enhancement	Ephemeral	11,887	16.97	19.23	22.74
В	Restoration	Ephemeral	30,111	47.64	55.02	61.88
В	Re-Establishment	Ephemeral	5,109	7.79	9.05	10.22
С	Enhancement	Ephemeral	11,512	14.49	17.92	22.41
С	Restoration	Ephemeral	55,561	89.67	102.55	114.54
С	Re-Establishment	Ephemeral	17,041	25.73	29.77	33.62
Subtotal	-	Intermittent / Perennial Pools	17,894	110.35	120.78	130.36
Subtoal	-	- Ephemeral		388.29	449.42	510.59
TOTAL	-	-	270,772	498.64	570.20	640.95

Notes for Table G-1:

1. The stream lengths and functional capacities listed in this table are from designs for each stream segment. Within this

Mitigation Plan UTRWD will use streams from these areas that will provide a minimum of 439.59 FCUs, plus the baseline

FCUs for the proposed mitigation streams with an appropriate safety factor.

2. Proposed SAR Length is from design plans provided in **Appendix F**.

3. FCU = Reach Length * FCI * Multiplication Factor; Shown rounded to the nearest hundredth. Refer to Table G-2 for data on individual SARs within each mitigation area.

Proposed Stream Assessment Reach (SAR) Name	Mitigation Zone	Panel No.	Mitigation Type	Stream Type	Proposed SAR Length (Linear Feet) ²	Proposed Total Stream Functional Capacity Index (FCI) ³	Multiplication Factor ⁴	Proposed Stream Functional Capacity (FCU) Total at Maturity ⁵
NSR-MC-RST	A	A-6, A-7, A-8	Restoration	Intermittent / Perennial Pools	6,629	2.30	0.00315	48.03
NSR-MC-RST (SPILLWAY)	А	A-6	Restoration	Ephemeral	1,600	1.77	0.00125	3.54
S1-TRIB1-(1a)	А	A-8	Restoration	Ephemeral	3,622	1.76	0.00125	7.97
S1-TRIB1-(1b)	Α	A-8	Restoration	Ephemeral	1,180	1.70	0.00125	2.51
S2-(2a)	А	A-10	Restoration	Ephemeral	1,425	1.68	0.00125	2.99
S2-(2b)	А	A-7	Restoration	Ephemeral	1,785	1.71	0.00125	3.82
S2-(3a)	А	A-7	Restoration	Intermittent / Perennial Pools	7,836	2.33	0.00315	57.51
S2-(3b)	А	A-8	Restoration	Intermittent / Perennial Pools	1,296	2.33	0.00315	9.51
S2-(3c)	А	A-8	Restoration	Intermittent / Perennial Pools	1,821	2.28	0.00315	13.08
S2-(3d)	А	A-8	Restoration	Intermittent / Perennial Pools	312	2.27	0.00315	2.23
S2-TRIB1-(1a)	A	A-14	Re-Establishment	Ephemeral	878	1.56	0.00125	1.71
S2-TRIB1-(1b)	Α	A-11, A-14	Restoration	Ephemeral	2,547	1.55	0.00125	4.93
S2-TRIB1-(2)	Α	A-8, A-11	Restoration	Ephemeral	5,589	1.61	0.00125	11.25
S2-TRIB1-A1-(1)	А	A-13	Restoration	Ephemeral	471	1.47	0.00125	0.87
S2-TRIB1-A1-(2)	Α	A-13	Restoration	Ephemeral	300	1.50	0.00125	0.56
S2-TRIB1-A1-(3)	Α	A-13	Restoration	Ephemeral	422	1.55	0.00125	0.82
S2-TRIB1-A1-(4)	Α	A-11	Restoration	Ephemeral	1,251	1.56	0.00125	2.44
S2-TRIB2-(1)	Α	A-16	Restoration	Ephemeral	234	1.62	0.00125	0.47
S2-TRIB2-(2)	A	A-16	Restoration	Ephemeral	385	1.63	0.00125	0.78
S2-TRIB2-(3)	А	A-16	Restoration	Ephemeral	187	1.68	0.00125	0.39
S2-TRIB2-(4)	Α	A-13	Restoration	Ephemeral	947	1.71	0.00125	2.02
S2-TRIB2-(5)	А	A-13	Restoration	Ephemeral	994	1.74	0.00125	2.16
S2-TRIB2-(6)	А	A-13	Restoration	Ephemeral	1,630	1.72	0.00125	3.50
S2-TRIB2-(7)	А	A-10	Restoration	Ephemeral	889	1.72	0.00125	1.91
S2-TRIB2-(8a)	А	A-7, A-10	Restoration	Ephemeral	2,582	1.72	0.00125	5.55
S2-TRIB2-(8b)	А	A-7	Restoration	Ephemeral	3,468	1.76	0.00125	7.63
S2-TRIB2-A1-(1)	А	A-13	Restoration	Ephemeral	649	1.49	0.00125	1.21
S2-TRIB2-A1-(2)	А	A-13	Restoration	Ephemeral	91	1.50	0.00125	0.17
S2-TRIB2-A1-(3)	А	A-13	Restoration	Ephemeral	369	1.56	0.00125	0.72
S2-TRIB2-A1-B1-(1)	А	A-13	Enhancement	Ephemeral	244	1.40	0.00125	0.43
S2-TRIB2-A2-(1)	А	A-13	Enhancement	Ephemeral	129	1.45	0.00125	0.23
S2-TRIB2-A2-(2)	А	A-13	Restoration	Ephemeral	450	1.56	0.00125	0.88
S2-TRIB2-A2-(3)	Α	A-13	Restoration	Ephemeral	362	1.68	0.00125	0.76
S2-TRIB2-A2-B5-(1)	А	A-13	Enhancement	Ephemeral	49	1.44	0.00125	0.09
S2-TRIB2-A2-B6-(1)	А	A-13	Enhancement	Ephemeral	61	1.43	0.00125	0.11
S2-TRIB2-A2-B7-(1)	А	A-13	Enhancement	Ephemeral	230	1.43	0.00125	0.41
S2-TRIB2-A2-B8-(1)	А	A-13	Enhancement	Ephemeral	183	1.42	0.00125	0.32
S2-TRIB2-A3-(1)	A	A-13	Restoration	Ephemeral	549	1.47	0.00125	1.01
S2-TRIB2-A3-(2)	A	A-13	Enhancement	Ephemeral	202	1.46	0.00125	0.37
S2-TRIB2-A3-(3)	A	A-13	Enhancement	Ephemeral	410	1.71	0.00125	0.88
S2-TRIB2-A3-(4)	A	A-13	Restoration	Ephemeral	640	1.70	0.00125	1.36
S2-TRIB2-A3-B4-(1)	А	A-13	Enhancement	Ephemeral	49	1.44	0.00125	0.09
S2-TRIB2-A4-(1)	А	A-16	Enhancement	Ephemeral	438	1.38	0.00125	0.76

Proposed Stream Assessment Reach (SAR) Name	Mitigation Zone	Panel No.	Mitigation Type	Stream Type	Proposed SAR Length (Linear Feet) ²	Proposed Total Stream Functional Capacity Index (FCI) ³	Multiplication Factor ⁴	Proposed Stream Functional Capacity (FCU) Total at Maturity ⁵
S2-TRIB2-A4-(2)	А	A-16	Restoration	Ephemeral	334	1.54	0.00125	0.64
S2-TRIB2-B2-(1)	A	A-16	Restoration	Ephemeral	359	1.51	0.00125	0.68
S2-TRIB2-B3-(1)	A	A-16	Enhancement	Ephemeral	139	1.36	0.00125	0.24
S2-TRIB2-B4-(1)	Α	A-13	Enhancement	Ephemeral	234	1.39	0.00125	0.41
S2-TRIB2-B4-(2)	A	A-13	Restoration	Ephemeral	204	1.56	0.00125	0.40
S2-TRIB3-(1)	Α	A-15	Restoration	Ephemeral	255	1.55	0.00125	0.49
S2-TRIB3-(2)	Α	A-15	Restoration	Ephemeral	558	1.63	0.00125	1.14
S2-TRIB3-(3)	А	A-15	Restoration	Ephemeral	295	1.63	0.00125	0.60
S2-TRIB3-(4)	Α	A-12	Restoration	Ephemeral	1,613	1.68	0.00125	3.39
S2-TRIB3-(5)	Α	A-12	Restoration	Ephemeral	707	1.66	0.00125	1.47
S2-TRIB3-(6)	A	A-12	Restoration	Ephemeral	1,191	1.73	0.00125	2.58
S2-TRIB3-(7)	А	A-12	Restoration	Ephemeral	1,089	1.73	0.00125	2.35
S2-TRIB3-(8)	A	A-10	Restoration	Ephemeral	2,018	1.69	0.00125	4.26
S2-TRIB3-(9)	Α	A-10	Restoration	Ephemeral	1,935	1.60	0.00125	3.87
S2-TRIB3-(10)	А	A-6	Enhancement	Ephemeral	1,473	1.92	0.00125	3.54
S2-TRIB3-A4-(1)	А	A-6	Restoration	Ephemeral	2,824	1.83	0.00125	6.46
S2-TRIB3-A5-(1)	А	A-12	Restoration	Ephemeral	528	1.49	0.00125	0.98
S2-TRIB3-A5-(2)	А	A-9	Restoration	Ephemeral	2,407	1.57	0.00125	4.72
S2-TRIB3-A5-(3)	А	A-9	Restoration	Ephemeral	1,333	1.74	0.00125	2.90
S2-TRIB3-A5-B1-(1)	А	A-12	Enhancement	Ephemeral	98	1.47	0.00125	0.18
S2-TRIB3-A5-B1-(2)	А	A-12	Restoration	Ephemeral	172	1.50	0.00125	0.32
S2-TRIB3-A5-B2-(1)	А	A-9	Restoration	Ephemeral	69	1.48	0.00125	0.13
S2-TRIB3-A5-B3-(1)	А	A-9	Restoration	Ephemeral	67	1.48	0.00125	0.12
S2-TRIB3-A5-B4-(1)	А	A-9	Restoration	Ephemeral	198	1.50	0.00125	0.37
S2-TRIB3-A5-TRIBA-(1)	А	A-9	Restoration	Ephemeral	657	1.52	0.00125	1.25
S2-TRIB3-A6-(1)	А	A-13	Enhancement	Ephemeral	844	1.44	0.00125	1.52
S2-TRIB3-A6-(2)	А	A-13	Restoration	Ephemeral	445	1.57	0.00125	0.87
S2-TRIB3-A7-(0)	А	A-15	Re-Establishment	Ephemeral	773	1.53	0.00125	1.48
S2-TRIB3-A7-(1)	А	A-12	Restoration	Ephemeral	1,318	1.58	0.00125	2.60
S2-TRIB3-A7-(2)	A	A-12	Restoration	Ephemeral	508	1.58	0.00125	1.00
S2-TRIB3-A7-(3)	A	A-12	Restoration	Ephemeral	700	1.77	0.00125	1.55
S2-TRIB3-A7-B2-(1)	A	A-12	Enhancement	Ephemeral	534	1.41	0.00125	0.94
S2-TRIB3-A7-B3-(1)	А	A-12	Restoration	Ephemeral	112	1.46	0.00125	0.20
S2-TRIB3-A7-B4-(1)	А	A-12	Enhancement	Ephemeral	548	1.40	0.00125	0.96
S2-TRIB3-A7-B5-(1)	А	A-12	Restoration	Ephemeral	353	1.48	0.00125	0.65
S2-TRIB3-A8-(1)	А	A-15	Restoration	Ephemeral	514	1.53	0.00125	0.98
S2-TRIB3-A8-(2)	А	A-15	Restoration	Ephemeral	359	1.51	0.00125	0.68
S2-TRIB3-A8-B1-(1)	А	A-15	Enhancement	Ephemeral	169	1.37	0.00125	0.29
S2-TRIB3-A8-B2-(1)	А	A-15	Enhancement	Ephemeral	129	1.37	0.00125	0.22
S2-TRIB3-A9-(1)	А	A-15	Enhancement	Ephemeral	130	1.41	0.00125	0.23
S2-TRIB3-A9-(2)	А	A-15	Restoration	Ephemeral	447	1.50	0.00125	0.84
S2-TRIB3-A10-(2)	А	A-15	Restoration	Ephemeral	105	1.50	0.00125	0.20
S2-TRIB3-A10-(3)	A	A-15	Restoration	Ephemeral	302	1.53	0.00125	0.58

Proposed Stream Assessment Reach (SAR) Name	Mitigation Zone	Panel No.	Mitigation Type	Stream Type	Proposed SAR Length (Linear Feet) ²	Proposed Total Stream Functional Capacity Index (FCI) ³	Multiplication Factor ⁴	Proposed Stream Functional Capacity (FCU) Total at Maturity ⁵
S2-TRIB3-A10-B1-(1)	А	A-15	Restoration	Ephemeral	123	1.50	0.00125	0.23
S2-TRIB3-B1-(1)	A	A-15	Restoration	Ephemeral	283	1.51	0.00125	0.53
T1-BAKER-(0)	A	A-4, A-5	Re-Establishment	Ephemeral	2,710	1.72	0.00125	5.83
T1-BAKER-(1)	A	A-5, A-8	Restoration	Ephemeral	1,540	1.66	0.00125	3.20
T2-BAKER-(1)	A	A-2	Enhancement	Ephemeral	1,493	1.57	0.00125	2.93
T2-BAKER-(2)	A	A-2	Restoration	Ephemeral	1,229	1.56	0.00125	2.40
T2-BAKER-(3)	A	A-2	Restoration	Ephemeral	698	1.56	0.00125	1.36
T2-BAKER-TRIB1-(1)	A	A-2	Enhancement	Ephemeral	274	1.35	0.00125	0.46
T2-BAKER-TRIB1-(2)	A	A-2	Restoration	Ephemeral	1,080	1.55	0.00125	2.09
T3-BAKER-(7)	A	A-2	Restoration	Ephemeral	430	1.66	0.00125	0.89
T3-BAKER-TRIB1-(1)	A	A-1	Restoration	Ephemeral	155	1.50	0.00125	0.29
T3-BAKER-TRIB1-(2)	A	A-2	Enhancement	Ephemeral	190	1.39	0.00125	0.33
T3-BAKER-TRIB1-(3a)	A	A-2	Restoration	Ephemeral	923	1.50	0.00125	1.73
T3-BAKER-TRIB1-(3b)	A	A-2	Restoration	Ephemeral	201	1.54	0.00125	0.39
T3-BAKER-TRIB1-B1-(1)	A	A-2	Enhancement	Ephemeral	289	1.36	0.00125	0.49
T3-BAKER-TRIB1-B2-(1)	Α	A-2	Enhancement	Ephemeral	165	1.56	0.00125	0.32
T3-BAKER-TRIB1-B2-(2)	A	A-2	Enhancement	Ephemeral	136	1.42	0.00125	0.24
T4-(2)	A	A-3	Re-Establishment	Ephemeral	302	1.54	0.00125	0.58
T4-(3)	Α	A-3	Re-Establishment	Ephemeral	549	1.46	0.00125	1.00
T4-(4)	Α	A-3	Re-Establishment	Ephemeral	738	1.55	0.00125	1.43
T4-(5)	Α	A-3	Re-Establishment	Ephemeral	938	1.47	0.00125	1.72
T4-(6)	Α	A-3	Re-Establishment	Ephemeral	799	1.57	0.00125	1.57
T4-(7)	A	A-6	Re-Establishment	Ephemeral	1,047	1.57	0.00125	2.05
T4-TRIB2-(1a)	A	A-3	Re-Establishment	Ephemeral	731	1.51	0.00125	1.38
T4-TRIB2-(1b)	A	A-3	Re-Establishment	Ephemeral	233	1.52	0.00125	0.44
T4-TRIB2-(1c)	Α	A-3	Re-Establishment	Ephemeral	539	1.52	0.00125	1.02
T4-TRIB2-(2)	Α	A-3	Re-Establishment	Ephemeral	517	1.54	0.00125	1.00
T5-(1a)	A	A-4	Re-Establishment	Ephemeral	666	1.50	0.00125	1.25
T5-(1b)	A	A-4	Re-Establishment	Ephemeral	431	1.49	0.00125	0.80
T5-(2)	A	A-4	Re-Establishment	Ephemeral	508	1.54	0.00125	0.98
T5-(3)	А	A-4	Re-Establishment	Ephemeral	394	1.55	0.00125	0.76
T5-(4)	А	A-4	Re-Establishment	Ephemeral	467	1.56	0.00125	0.91
T5-(5)	А	A-4	Re-Establishment	Ephemeral	3,856	1.71	0.00125	8.24
T5-TRIB1-(1a)	А	A-3, A-4	Re-Establishment	Ephemeral	569	1.49	0.00125	1.06
T5-TRIB1-(1b)	А	A-4	Re-Establishment	Ephemeral	390	1.49	0.00125	0.73
T5-TRIB1-(1c)	A	A-4	Re-Establishment	Ephemeral	218	1.49	0.00125	0.41
T6-BAKER-(1a)	A	A-4	Restoration	Ephemeral	1,015	1.56	0.00125	1.98
T6-BAKER-(1b)	A	A-4	Restoration	Ephemeral	1,132	1.57	0.00125	2.22
T6-BAKER-(1c)	А	A-4, A-5	Restoration	Ephemeral	2,732	1.61	0.00125	5.50
AX-S2-TRIB1-(1)	A	A-17	Restoration	Ephemeral	921	1.55	0.00125	1.78
AX-S2-TRIB1-(2)	A	A-17	Restoration	Ephemeral	591	1.55	0.00125	1.15
AX-S2-TRIB1-(3)	А	A-14	Restoration	Ephemeral	701	1.80	0.00125	1.58
AX-S2-TRIB1-(4)	Α	A-14	Restoration	Ephemeral	1,292	1.80	0.00125	2.91

Proposed Stream Assessment Reach (SAR) Name	Mitigation Zone	Panel No.	Mitigation Type	Stream Type	Proposed SAR Length (Linear Feet) ²	Proposed Total Stream Functional Capacity Index (FCI) ³	Multiplication Factor ⁴	Proposed Stream Functional Capacity (FCU) Total at Maturity⁵
AX-S2-TRIB1-A2-(1)	A	A-14	Enhancement	Ephemeral	791	1.44	0.00125	1.42
AX-S2-TRIB1-A2-(2)	A	A-14	Restoration	Ephemeral	876	1.54	0.00125	1.69
AX-S2-TRIB1-A2-TRIBA-(1)	A	A-14	Enhancement	Ephemeral	342	1.38	0.00125	0.59
AX-S2-TRIB1-A3-(1)	A	A-14	Restoration	Ephemeral	227	1.54	0.00125	0.44
AX-S2-TRIB1-A4-(1a)	A	A-14, A-17	Restoration	Ephemeral	1,071	1.80	0.00125	2.41
AX-S2-TRIB1-A4-(1b)	A	A-14	Restoration	Ephemeral	652	1.78	0.00125	1.45
AX-S2-TRIB1-A4-TRIBA-(1)	A	A-14	Restoration	Ephemeral	295	1.52	0.00125	0.56
AX-S2-TRIB1-A4-TRIBB-(1)	A	A-17	Enhancement	Ephemeral	129	1.42	0.00125	0.23
AX-S2-TRIB1-A4-TRIBB-(2a)	A	A-17	Restoration	Ephemeral	141	1.53	0.00125	0.27
AX-S2-TRIB1-A4-TRIBB-(2b)	A	A-14, A-17	Restoration	Ephemeral	466	1.54	0.00125	0.90
AX-S2-TRIB1-A4-TRIBB-(2c)	A	A-14	Restoration	Ephemeral	592	1.55	0.00125	1.15
AX-S2-TRIB1-A4-TRIBB-AA-(1)	A	A-14	Enhancement	Ephemeral	206	1.46	0.00125	0.38
AX-S2-TRIB1-A4-TRIBB-AB-(1)	A	A-14, A-17	Enhancement	Ephemeral	226	1.44	0.00125	0.41
AX-S2-TRIB1-A4-TRIBB-AC-(1)	A	A-17	Enhancement	Ephemeral	141	1.46	0.00125	0.26
AX-S2-TRIB1-A4-TRIBC-(1)	A	A-17	Enhancement	Ephemeral	172	1.42	0.00125	0.31
AX-S2-TRIB1-A4-TRIBC-(2)	A	A-17	Re-Establishment	Ephemeral	112	1.50	0.00125	0.21
AX-S2-TRIB1-A4-TRIBD-(1)	A	A-17	Restoration	Ephemeral	257	1.51	0.00125	0.49
AX-S2-TRIB1-A4-TRIBE-(1)	A	A-17	Restoration	Ephemeral	221	1.48	0.00125	0.41
AX-S2-TRIB1-A5-(1)	A	A-14	Restoration	Ephemeral	254	1.53	0.00125	0.49
AX-S2-TRIB1-A6-(1)	A	A-17	Enhancement	Ephemeral	439	1.48	0.00125	0.81
AX-S2-TRIB1-A7-(1)	A	A-17	Restoration	Ephemeral	359	1.49	0.00125	0.67
AX-S2-TRIB1-A7-(2)	A	A-17	Restoration	Ephemeral	154	1.55	0.00125	0.30
AX-S2-TRIB2-B2-(1)	A	A-16	Enhancement	Ephemeral	355	1.45	0.00125	0.64
AX-S2-TRIB2-B2-TRIBA-(1)	A	A-16	Enhancement	Ephemeral	384	1.40	0.00125	0.67
AX-S2-TRIB3-(1)	A	A-15	Enhancement	Ephemeral	211	1.44	0.00125	0.38
AX-S2-TRIB3-(2a)	A	A-15	Restoration	Ephemeral	804	1.57	0.00125	1.58
AX-S2-TRIB3-(2b)	A	A-15	Restoration	Ephemeral	1,036	1.60	0.00125	2.07
AX-S2-TRIB3-A7-(1)	A	A-16	Enhancement	Ephemeral	139	1.48	0.00125	0.26
AX-S2-TRIB3-A7-(2a)	A	A-16	Restoration	Ephemeral	242	1.55	0.00125	0.47
AX-S2-TRIB3-A7-(2b)	A	A-16	Restoration	Ephemeral	321	1.57	0.00125	0.63
AX-S2-TRIB3-A7-(2c)	A	A-16	Restoration	Ephemeral	176	1.56	0.00125	0.34
AX-S2-TRIB3-A7-(3)	A	A-16	Enhancement	Ephemeral	564	1.57	0.00125	1.11
AX-S2-TRIB3-A7-(4)	A	A-15, A-16	Re-Establishment	Ephemeral	555	1.56	0.00125	1.08
AX-S2-TRIB3-A7-TRIBA-(1)	A	A-15	Restoration	Ephemeral	401	1.48	0.00125	0.74
AX-S2-TRIB3-A7-TRIBA-(2)	A	A-15	Enhancement	Ephemeral	233	1.50	0.00125	0.44
AX-S2-TRIB3-A7-TRIBA-(3)	A	A-15	Restoration	Ephemeral	97	1.48	0.00125	0.18
AX-S2-TRIB3-A7-TRIBA-(4)	A	A-15	Re-Establishment	Ephemeral	457	1.57	0.00125	0.90
AX-S2-TRIB3-A7-TRIBA-AA-(1)	A	A-15	Restoration	Ephemeral	122	1.48	0.00125	0.23
AX-S2-TRIB3-A7-TRIBA-AB-(1)	A	A-15	Enhancement	Ephemeral	168	1.44	0.00125	0.30
AX-S2-TRIB3-A7-TRIBA-AC-(1)	A	A-15	Restoration	Ephemeral	79	1.50	0.00125	0.15
AX-S2-TRIB3-A7-TRIBA-AD-(1)	A	A-15	Restoration	Ephemeral	86	1.48	0.00125	0.16
AX-S2-TRIB3-A7-TRIBB-(1)	A	A-16	Restoration	Ephemeral	290	1.53	0.00125	0.55
AX-S2-TRIB3-A7-TRIBB-(2)	A	A-16	Re-Establishment	Ephemeral	134	1.54	0.00125	0.26

SWF-2003-00336

Appendix G - Detailed Proposed FCUs for SARs Within Mitigation Zones July 11, 2019 (DRAFT)

Proposed Stream Assessment Reach (SAR) Name	Mitigation Zone	Panel No.	Mitigation Type	Stream Type	Proposed SAR Length (Linear Feet) ²	Proposed Total Stream Functional Capacity Index (FCI) ³	Multiplication Factor ⁴	Proposed Stream Functional Capacity (FCU) Total at Maturity ⁵
AX-S2-TRIB3-A7-TRIBB-AA-(1)	A	A-16	Restoration	Ephemeral	275	1.49	0.00125	0.51
AX-S2-TRIB3-A7-TRIBC-(1)	A	A-15, A-16	Restoration	Ephemeral	179	1.53	0.00125	0.34
AX-S2-TRIB3-A7-TRIBD-(1)	A	A-16	Enhancement	Ephemeral	284	1.33	0.00125	0.47
AX-S2-TRIB3-A7-TRIBD-AA-(1)	Α	A-16	Enhancement	Ephemeral	69	1.30	0.00125	0.11
AX-S2-TRIB3-A7-TRIBE-(1)	A	A-15	Restoration	Ephemeral	895	1.53	0.00125	1.71
AX-S2-TRIB3-A7-TRIBF-(1)	A	A-16	Restoration	Ephemeral	94	1.48	0.00125	0.17
AX-S2-TRIB3-A7-TRIBG-(1)	A	A-16	Restoration	Ephemeral	142	1.50	0.00125	0.27
AX-S2-TRIB3-A10-(1)	A	A-15	Enhancement	Ephemeral	218	1.49	0.00125	0.41
AX-S2-TRIB3-A10-(2)	А	A-15	Restoration	Ephemeral	235	1.55	0.00125	0.46
AX-S2-TRIB3-A10-B1-(1)	А	A-15	Restoration	Ephemeral	70	1.53	0.00125	0.13
AX-S2-TRIB3-A10-TRIBA-(1)	А	A-15	Restoration	Ephemeral	289	1.53	0.00125	0.55
AX-S2-TRIB3-A11-(1)	A	A-15	Enhancement	Ephemeral	429	1.46	0.00125	0.78
AX-S2-TRIB3-A12-(1)	А	A-15	Enhancement	Ephemeral	163	1.46	0.00125	0.30
AX-S2-TRIB3-A13-(1)	А	A-15	Enhancement	Ephemeral	255	1.44	0.00125	0.46
AX-S2-TRIB3-A13-(2)	А	A-15	Restoration	Ephemeral	244	1.54	0.00125	0.47
AX-S2-TRIB3-A14-(1)	А	A-15	Enhancement	Ephemeral	144	1.45	0.00125	0.26
AX-S2-TRIB3-A14-(2)	А	A-15	Restoration	Ephemeral	345	1.55	0.00125	0.67
AX-S2-TRIB3-A15-(1)	A	A-15	Enhancement	Ephemeral	93	1.47	0.00125	0.17
AX-S2-TRIB3-A16-(1)	A	A-15	Enhancement	Ephemeral	157	1.42	0.00125	0.28
AX-S2-TRIB3-A16-(2)	А	A-15	Restoration	Ephemeral	327	1.54	0.00125	0.63
AX-S2-TRIB3-A17-(1)	А	A-15	Restoration	Ephemeral	224	1.53	0.00125	0.43
AX-S2-TRIB3-A18-(0)	А	A-15	Re-Establishment	Ephemeral	276	1.54	0.00125	0.53
AX-S2-TRIB3-A18-(1)	A	A-15	Enhancement	Ephemeral	103	1.43	0.00125	0.18
AX-S2-TRIB3-A19-(1)	А	A-15	Restoration	Ephemeral	232	1.54	0.00125	0.45
AX-S2-TRIB3-A20-(1)	A	A-15	Restoration	Ephemeral	205	1.53	0.00125	0.39
A Subtotal	-	-	-	-	139,551	-	-	375.54
S15-TRIB3-(1)	В	B-3	Enhancement	Ephemeral	76	1.49	0.00125	0.14
S15-TRIB3-(2a)	В	B-3	Enhancement	Ephemeral	736	1.48	0.00125	1.36
S15-TRIB3-(2b)	В	B-1	Enhancement	Ephemeral	226	1.48	0.00125	0.42
S15-TRIB3-(3)	В	B-1	Restoration	Ephemeral	476	1.80	0.00125	1.07
S15-TRIB3-(4)	В	B-1	Enhancement	Ephemeral	1.115	1.77	0.00125	2.47
S15-TRIB3-A1-(1)	В	B-1	Restoration	Ephemeral	211	1.51	0.00125	0.40
S15-TRIB3-A1-(2)	В	B-1	Enhancement	Ephemeral	809	1.53	0.00125	1.55
S15-TRIB3-A1-(3)	В	B-1	Restoration	Ephemeral	149	1.79	0.00125	0.33
S15-TRIB3-A1-TRIBA-(1)	В	B-1	Enhancement	Ephemeral	159	1.46	0.00125	0.29
S15-TRIB3-A2-(1)	В	B-1	Enhancement	Ephemeral	567	1.70	0.00125	1.20
S15-TRIB3-A3-(1)	В	B-1	Enhancement	Ephemeral	182	1.42	0.00125	0.32
S15-TRIB3-A3-(2)	В	B-1	Re-Establishment	Ephemeral	429	1.55	0.00125	0.83
S15-TRIB3-A3-(3)	В	B-1	Enhancement	Ephemeral	354	1.41	0.00125	0.62
S15-TRIB3-A3-(4)	B	B-1	Enhancement	Ephemeral	317	1.70	0.00125	0.67
S15-TRIB3-A3-(5)	B	B-1	Restoration	Ephemeral	385	1.80	0.00125	0.87
S15-TRIB3-A3-TRIBA-(1)	B	B-1	Enhancement	Ephemeral	266	1.41	0.00125	0.07
S15-TRIB3-A3-TRIBB-(1)	B	B-1	Enhancement	Ephemeral	59	1.40	0.00125	0.10

Proposed Stream Assessment Reach (SAR) Name	Mitigation Zone	Panel No.	Mitigation Type	Stream Type	Proposed SAR Length (Linear Feet) ²	Proposed Total Stream Functional Capacity Index (FCI) ³	Multiplication Factor ⁴	Proposed Stream Functional Capacity (FCU) Total at Maturity ⁵
S15-TRIB3-A3-TRIBB-(2)	В	B-1	Re-Establishment	Ephemeral	311	1.49	0.00125	0.58
S15-TRIB3-A4-(1)	В	B-1	Restoration	Ephemeral	186	1.49	0.00125	0.35
S15-TRIB3-A5-(1a)	В	B-1	Restoration	Ephemeral	530	1.50	0.00125	0.99
S15-TRIB3-A5-(1b)	В	B-1	Restoration	Ephemeral	538	1.54	0.00125	1.04
S15-TRIB3-A5-TRIBA-(1)	В	B-1	Restoration	Ephemeral	300	1.49	0.00125	0.56
S15-TRIB3-A6-(1)	В	B-1	Restoration	Ephemeral	830	1.52	0.00125	1.58
S15-TRIB3-A7-(1)	В	B-1	Enhancement	Ephemeral	457	1.40	0.00125	0.80
S15-TRIB3-A8-(1)	В	B-1, B-3	Restoration	Ephemeral	455	1.51	0.00125	0.86
S15-TRIB3-A9-(1)	В	B-1	Restoration	Ephemeral	126	1.53	0.00125	0.24
S16-(1)	В	B-8	Restoration	Ephemeral	912	1.83	0.00125	2.09
S16-(2a)	В	B-8	Restoration	Ephemeral	1,305	1.79	0.00125	2.92
S16-(2b)	В	B-5	Restoration	Ephemeral	945	1.75	0.00125	2.07
S16-TRIB7-(1)	В	B-7	Restoration	Ephemeral	613	1.83	0.00125	1.40
S16-TRIB7-(2)	В	B-7	Restoration	Ephemeral	935	1.82	0.00125	2.13
S16-TRIB7-(3)	В	B-7	Re-Establishment	Ephemeral	1.429	1.81	0.00125	3.23
S16-TRIB7-(4)	В	B-4	Restoration	Ephemeral	420	1.81	0.00125	0.95
S16-TRIB7-(5)	В	B-4	Restoration	Ephemeral	1.597	1.79	0.00125	3.57
S16-TRIB7-A2-(1)	В	B-4	Re-Establishment	Ephemeral	588	1.47	0.00125	1.08
S16-TRIB7-A2-(2)	В	B-4	Restoration	Ephemeral	411	1.50	0.00125	0.77
S16-TRIB7-A3-(1)	В	B-4	Enhancement	Ephemeral	176	1.44	0.00125	0.32
S16-TRIB7-A3-(2a)	В	B-4	Restoration	Ephemeral	322	1.52	0.00125	0.61
S16-TRIB7-A3-(2b)	В	B-4	Restoration	Ephemeral	408	1.53	0.00125	0.78
S16-TRIB7-A3-(2c)	В	B-4	Restoration	Ephemeral	492	1.53	0.00125	0.94
S16-TRIB7-A3-(2d)	В	B-4	Restoration	Ephemeral	570	1.56	0.00125	1.11
S16-TRIB7-A3-(3)	В	B-4	Re-Establishment	Ephemeral	821	1.55	0.00125	1.59
S16-TRIB7-A3-(4)	В	B-4	Restoration	Ephemeral	407	1.56	0.00125	0.79
S16-TRIB7-A3-TRIBA-(1a)	В	B-4	Restoration	Ephemeral	607	1.48	0.00125	1.12
S16-TRIB7-A3-TRIBA-(1b)	В	B-4	Restoration	Ephemeral	537	1.52	0.00125	1.02
S16-TRIB7-A3-TRIBA-AA-(1)	В	B-4	Restoration	Ephemeral	165	1.49	0.00125	0.31
S16-TRIB7-A3-TRIBA-AB-(1)	В	B-4	Restoration	Ephemeral	215	1.51	0.00125	0.41
S16-TRIB7-A3-TRIBB-(1)	В	B-4	Restoration	Ephemeral	167	1.54	0.00125	0.32
S16-TRIB7-A3-TRIBC-(1)	В	B-4	Restoration	Ephemeral	249	1.46	0.00125	0.45
S16-TRIB7-A3-TRIBD-(1)	В	B-4	Restoration	Ephemeral	121	1.49	0.00125	0.23
S16-TRIB7-A3-TRIBE-(1a)	В	B-4	Restoration	Ephemeral	151	1.54	0.00125	0.29
S16-TRIB7-A3-TRIBE-(1b)	В	B-4	Restoration	Ephemeral	291	1.55	0.00125	0.56
S16-TRIB7-A3-TRIBE-(1c)	В	B-4	Restoration	Ephemeral	220	1.54	0.00125	0.42
S16-TRIB7-A3-TRIBF-(1)	В	B-7	Enhancement	Ephemeral	453	1.44	0.00125	0.82
S16-TRIB7-A3-TRIBF-(2)	В	B-4	Restoration	Ephemeral	573	1.51	0.00125	1.08
S16-TRIB7-A3-TRIBF-AA-(1)	В	B-7	Enhancement	Ephemeral	369	1.40	0.00125	0.65
S16-TRIB7-A3-TRIBG-(1)	В	B-4	Restoration	Ephemeral	403	1.49	0.00125	0.75
S16-TRIB7-A3-TRIBH-(1)	В	B-4	Restoration	Ephemeral	259	1.49	0.00125	0.48
S16-TRIB7-A3-TRIBI-(1)	В	B-4	Restoration	Ephemeral	366	1.53	0.00125	0.70
S16-TRIB7-A4-(1)	В	B-8	Enhancement	Ephemeral	436	1.75	0.00125	0.95

Proposed Stream Assessment Reach (SAR) Name	Mitigation Zone	Panel No.	Mitigation Type	Stream Type	Proposed SAR Length (Linear Feet) ²	Proposed Total Stream Functional Capacity Index (FCI) ³	Multiplication Factor ⁴	Proposed Stream Functional Capacity (FCU) Total at Maturity ⁵
S16-TRIB7-A4-(2)	В	B-5, B-8	Re-Establishment	Ephemeral	359	1.56	0.00125	0.70
S16-TRIB7-A4-(3)	В	B-5	Restoration	Ephemeral	237	1.56	0.00125	0.46
S16-TRIB7-A5-(1)	В	B-7	Enhancement	Ephemeral	451	1.40	0.00125	0.79
S16-TRIB7-A6-(1)	В	B-7	Restoration	Ephemeral	559	1.46	0.00125	1.02
S16-TRIB7-A6-TRIBA-(1)	В	B-7	Restoration	Ephemeral	461	1.46	0.00125	0.84
S16-TRIB7-A6-TRIBB-(1)	В	B-7	Restoration	Ephemeral	373	1.49	0.00125	0.69
S16-TRIB7-A7-(1)	В	B-7	Enhancement	Ephemeral	664	1.86	0.00125	1.54
S16-TRIB8-(1)	В	B-3	Enhancement	Ephemeral	708	1.45	0.00125	1.28
S16-TRIB8-(2a)	В	B-3	Restoration	Ephemeral	276	1.76	0.00125	0.61
S16-TRIB8-(2b)	В	B-3	Restoration	Ephemeral	388	1.75	0.00125	0.85
S16-TRIB8-(2c)	В	B-2	Restoration	Ephemeral	1,171	1.76	0.00125	2.58
S16-TRIB8-A1-(1)	В	B-2	Re-Establishment	Ephemeral	511	1.49	0.00125	0.95
S16-TRIB8-A1-(2)	В	B-2	Enhancement	Ephemeral	139	1.42	0.00125	0.25
S16-TRIB8-A1-(3)	В	B-2	Restoration	Ephemeral	221	1.51	0.00125	0.42
S16-TRIB8-A2-(1)	В	B-2	Enhancement	Ephemeral	721	1.44	0.00125	1.30
S16-TRIB8-A2-(2)	В	B-2	Restoration	Ephemeral	411	1.52	0.00125	0.78
S16-TRIB8-A3-(1)	В	B-2	Enhancement	Ephemeral	356	1.42	0.00125	0.63
S16-TRIB8-A3-(2)	В	B-2	Re-Establishment	Ephemeral	171	1.49	0.00125	0.32
S16-TRIB8-A3-(3)	В	B-2	Enhancement	Ephemeral	129	1.44	0.00125	0.23
S16-TRIB8-A4-(1)	В	B-3	Enhancement	Ephemeral	596	1.44	0.00125	1.07
S16-TRIB8-A4-(2)	В	B-3	Restoration	Ephemeral	185	1.49	0.00125	0.34
S16-TRIB8-A5-(1)	В	B-3	Restoration	Ephemeral	849	1.54	0.00125	1.63
S16-TRIB8-A6-(1)	В	B-3	Enhancement	Ephemeral	113	1.42	0.00125	0.20
S16-TRIB10-(1a)	В	B-9	Restoration	Ephemeral	1,187	1.79	0.00125	2.66
S16-TRIB10-(1b)	В	B-9	Restoration	Ephemeral	429	1.75	0.00125	0.94
S16-TRIB10-(2)	В	B-8, B-9	Restoration	Ephemeral	517	1.80	0.00125	1.16
S16-TRIB10-A1-(1)	В	B-9	Re-Establishment	Ephemeral	490	1.53	0.00125	0.94
S16-TRIB10-A1-(2a)	В	B-9	Restoration	Ephemeral	378	1.56	0.00125	0.74
S16-TRIB10-A1-(2b)	В	B-9	Restoration	Ephemeral	599	1.52	0.00125	1.14
S16-TRIB11-(1)	В	B-8	Restoration	Ephemeral	1,108	1.82	0.00125	2.52
S16-TRIB11-(2)	В	B-8	Restoration	Ephemeral	1,040	1.81	0.00125	2.35
S16-TRIB11-A1-(1)	В	B-8	Enhancement	Ephemeral	126	1.55	0.00125	0.24
S16-TRIB11-A1-(2)	В	B-8	Restoration	Ephemeral	95	1.51	0.00125	0.18
S16-TRIB11-A2-(1)	В	B-8	Enhancement	Ephemeral	72	1.54	0.00125	0.14
S16-TRIB11-A2-(2)	В	B-8	Restoration	Ephemeral	79	1.49	0.00125	0.15
S16-TRIB11-A3-(1)	В	B-8	Enhancement	Ephemeral	65	1.52	0.00125	0.12
S16-TRIB11-A3-(2)	В	B-8	Enhancement	Ephemeral	291	1.48	0.00125	0.54
S16-TRIB11-A3-(3)	В	B-8	Restoration	Ephemeral	106	1.49	0.00125	0.20
S16-TRIB12-(1a)	В	B-9	Restoration	Ephemeral	581	1.54	0.00125	1.12
S16-TRIB12-(1b)	В	B-9	Restoration	Ephemeral	822	1.54	0.00125	1.58
S16-TRIB13-(1)	В	B-8	Enhancement	Ephemeral	699	1.44	0.00125	1.26
S16-TRIB13-(2)	В	B-8	Restoration	Ephemeral	192	1.50	0.00125	0.36
B Subtotal		-			47,107	-	-	94.84

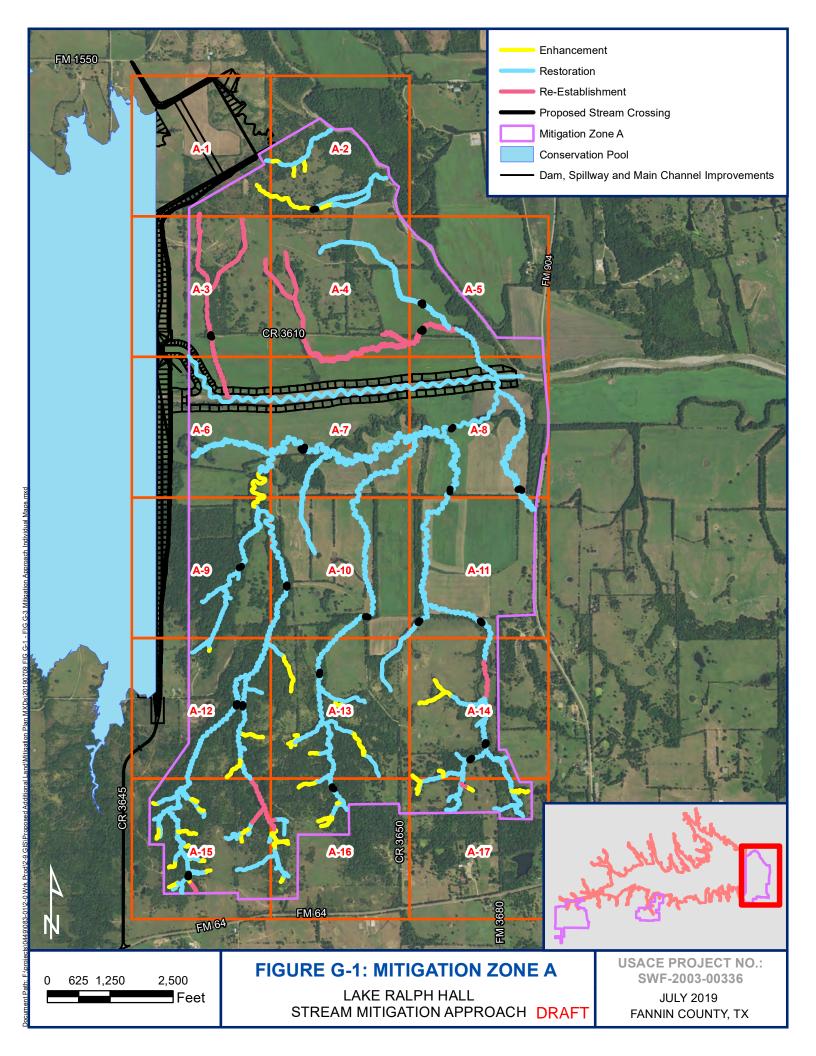
Proposed Stream Assessment Reach (SAR) Name	Mitigation Zone	Panel No.	Mitigation Type	Stream Type	Proposed SAR Length (Linear Feet) ²	Proposed Total Stream Functional Capacity Index (FCI) ³	Multiplication Factor ⁴	Proposed Stream Functional Capacity (FCU) Total at Maturity ⁵
S25-(7)	С	C-12	Re-Establishment	Ephemeral	641	1.76	0.00125	1.41
S25-(8)	С	C-9, C-12	Enhancement	Ephemeral	3,619	1.70	0.00125	7.69
S25-(9a)	С	C-6	Restoration	Ephemeral	4,212	1.77	0.00125	9.32
S25-(9b)	С	C-3	Restoration	Ephemeral	1,480	1.78	0.00125	3.29
S25-TRIB1-(1)	С	C-2	Enhancement	Ephemeral	603	1.48	0.00125	1.12
S25-TRIB1-(2a)	С	C-3	Restoration	Ephemeral	683	1.79	0.00125	1.53
S25-TRIB1-(2b)	С	C-3	Restoration	Ephemeral	270	1.78	0.00125	0.60
S25-TRIB1-A1-(1)	С	C-3	Restoration	Ephemeral	268	1.50	0.00125	0.50
S25-TRIB2-(1)	С	C-5	Re-Establishment	Ephemeral	535	1.53	0.00125	1.02
S25-TRIB2-(2)	С	C-6	Enhancement	Ephemeral	714	1.43	0.00125	1.28
S25-TRIB2-(3)	С	C-6	Restoration	Ephemeral	406	1.77	0.00125	0.90
S25-TRIB3-(1)	С	C-6	Restoration	Ephemeral	681	1.54	0.00125	1.31
S25-TRIB4-(1)	С	C-5	Restoration	Ephemeral	317	1.49	0.00125	0.59
S25-TRIB4-(2)	С	C-6	Restoration	Ephemeral	1,406	1.54	0.00125	2.71
S25-TRIB5-(0)	С	C-6	Restoration	Ephemeral	1,654	1.55	0.00125	3.20
S25-TRIB5-(1)	С	C-6	Restoration	Ephemeral	443	1.54	0.00125	0.85
S25-TRIB6-(1)	С	C-5, C-6	Re-Establishment	Ephemeral	1,908	1.54	0.00125	3.67
S25-TRIB6-(2)	С	C-6	Enhancement	Ephemeral	909	1.73	0.00125	1.97
S25-TRIB9-(1)	С	C-9	Restoration	Ephemeral	391	1.49	0.00125	0.73
S25-TRIB10-(1)	С	C-9	Restoration	Ephemeral	837	1.51	0.00125	1.58
S25-TRIB10-(2)	С	C-9	Re-Establishment	Ephemeral	322	1.49	0.00125	0.60
S25-TRIB10-(3)	С	C-9	Restoration	Ephemeral	395	1.74	0.00125	0.86
S25-TRIB10-A1-(1)	С	C-9	Re-Establishment	Ephemeral	692	1.48	0.00125	1.28
S25-TRIB11-(1)	С	C-9	Re-Establishment	Ephemeral	1,147	1.48	0.00125	2.12
S25-TRIB11-(2)	С	C-9	Restoration	Ephemeral	370	1.48	0.00125	0.68
S25-TRIB12-(1)	С	C-13	Restoration	Ephemeral	334	1.48	0.00125	0.62
S25-TRIB12-(2)	С	C-13	Restoration	Ephemeral	382	1.55	0.00125	0.74
S25-TRIB12-(3)	С	C-10	Restoration	Ephemeral	444	1.51	0.00125	0.84
S25-TRIB12-(4)	С	C-9	Enhancement	Ephemeral	478	1.47	0.00125	0.88
S25-TRIB12-(5a)	С	C-12	Re-Establishment	Ephemeral	308	1.77	0.00125	0.68
S25-TRIB12-(5b)	С	C-12	Re-Establishment	Ephemeral	627	1.77	0.00125	1.39
S25-TRIB12-(6)	С	C-9	Enhancement	Ephemeral	590	1.69	0.00125	1.25
S25-TRIB12-(7)	С	C-9	Restoration	Ephemeral	310	1.73	0.00125	0.67
S25-TRIB12-A1-(1)	С	C-12	Re-Establishment	Ephemeral	953	1.53	0.00125	1.82
S25-TRIB12-A1-(2)	С	C-12	Re-Establishment	Ephemeral	352	1.55	0.00125	0.68
S25-TRIB12-A1-TRIBA-(1)	С	C-12	Re-Establishment	Ephemeral	550	1.53	0.00125	1.05
S25-TRIB12-A2-(1)	С	C-10	Restoration	Ephemeral	1,166	1.50	0.00125	2.19
S25-TRIB12-A3-(1)	С	C-10, C-13	Restoration	Ephemeral	780	1.54	0.00125	1.50
S25-TRIB13-(1)	С	C-8	Re-Establishment	Ephemeral	616	1.53	0.00125	1.18
S25-TRIB13-(2)	С	C-8	Restoration	Ephemeral	712	1.51	0.00125	1.34
S25-TRIB13-(3)	С	C-9	Re-Establishment	Ephemeral	1,324	1.76	0.00125	2.91
S25-TRIB13-A1-(1)	С	C-8, C-9	Enhancement	Ephemeral	953	1.38	0.00125	1.64
S25-TRIB13-A1-(2)	С	C-9	Re-Establishment	Ephemeral	724	1.54	0.00125	1.39

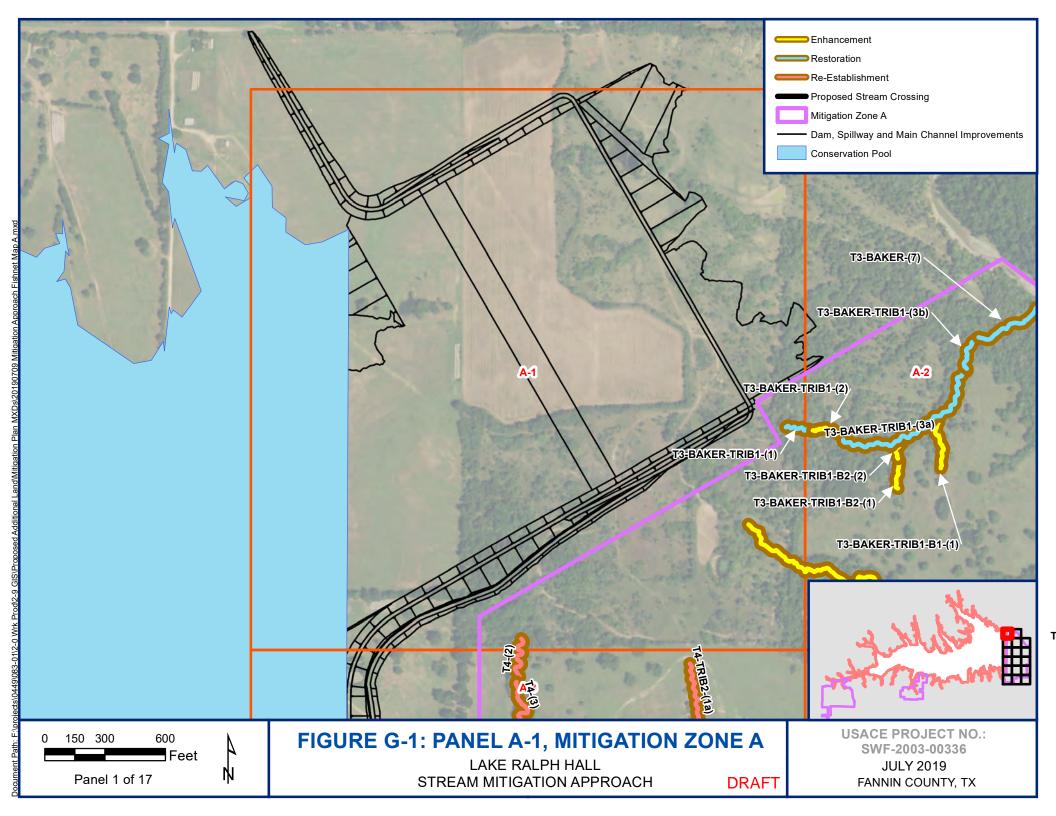
Proposed Stream Assessment Reach (SAR) Name	Mitigation Zone	Panel No.	Mitigation Type	Stream Type	Proposed SAR Length (Linear Feet) ²	Proposed Total Stream Functional Capacity Index (FCI) ³	Multiplication Factor ⁴	Proposed Stream Functional Capacity (FCU) Total at Maturity ⁵
S25-TRIB14-(2)	С	C-12	Enhancement	Ephemeral	129	1.43	0.00125	0.23
S25-TRIB15-(1)	С	C-6, C-9	Re-Establishment	Ephemeral	1,976	1.54	0.00125	3.80
S26-(5a)	С	C-14	Restoration	Ephemeral	945	1.75	0.00125	2.07
S26-(5b)	С	C-11, C-14	Restoration	Ephemeral	451	1.75	0.00125	0.99
S26-(5c)	С	C-11	Restoration	Ephemeral	2,790	1.77	0.00125	6.17
S26-(6a)	С	C-7, C-11	Restoration	Ephemeral	2,540	1.76	0.00125	5.59
S26-(6b)	С	C-7	Restoration	Ephemeral	1,580	1.77	0.00125	3.50
S26-(6c)	С	C-4	Restoration	Ephemeral	2,243	1.75	0.00125	4.91
S26-(6d)	С	C-5	Restoration	Ephemeral	248	1.75	0.00125	0.54
S26-(6e)	С	C-2, C-5	Restoration	Ephemeral	3,175	1.76	0.00125	6.99
S26-TRIB1-(1)	С	C-2	Restoration	Ephemeral	200	1.47	0.00125	0.37
S26-TRIB2-(1)	С	C-1	Enhancement	Ephemeral	1,019	1.47	0.00125	1.87
S26-TRIB2-(2)	С	C-1, C-4	Re-Establishment	Ephemeral	787	1.54	0.00125	1.51
S26-TRIB2-(3)	С	C-4	Restoration	Ephemeral	301	1.56	0.00125	0.59
S26-TRIB2-(4)	С	C-5	Restoration	Ephemeral	614	1.75	0.00125	1.34
S26-TRIB3-(1)	С	C-4	Enhancement	Ephemeral	781	1.45	0.00125	1.42
S26-TRIB3-(2a)	С	C-4	Restoration	Ephemeral	717	1.76	0.00125	1.58
S26-TRIB3-(2b)	С	C-4	Restoration	Ephemeral	1,480	1.76	0.00125	3.26
S26-TRIB3-(2c)	С	C-4	Restoration	Ephemeral	703	1.75	0.00125	1.54
S26-TRIB4-(0)	С	C-5	Re-Establishment	Ephemeral	588	1.48	0.00125	1.09
S26-TRIB4-(1)	С	C-5	Restoration	Ephemeral	1,492	1.75	0.00125	3.26
S26-TRIB5-(1)	C	C-4	Restoration	Ephemeral	487	1.53	0.00125	0.93
S26-TRIB6-(1a)	С	C-4	Restoration	Ephemeral	1,022	1.51	0.00125	1.93
S26-TRIB6-(1b)	С	C-4	Restoration	Ephemeral	1,571	1.51	0.00125	2.97
S26-TRIB7-(1)	С	C-8	Re-Establishment	Ephemeral	1,719	1.53	0.00125	3.29
S26-TRIB7-(2)	C	C-5	Restoration	Ephemeral	1,329	1.73	0.00125	2.87
S26-TRIB8-(1)	C	C-4. C-7	Restoration	Ephemeral	642	1.47	0.00125	1.18
S26-TRIB9-(1)	C	C-4, C-7	Restoration	Ephemeral	742	1.50	0.00125	1.39
S26-TRIB10-(1a)	C	C-7	Restoration	Ephemeral	1.524	1.52	0.00125	2.90
S26-TRIB10-(1b)	C	C-7	Restoration	Ephemeral	1,166	1.73	0.00125	2.52
S26-TRIB10-A1-(1)	C	C-7	Restoration	Ephemeral	748	1.50	0.00125	1.40
S26-TRIB10-A1-(2)	C	C-7	Restoration	Ephemeral	1.634	1.51	0.00125	3.08
S26-TRIB10-A2-(1)	C	C-7	Restoration	Ephemeral	349	1.49	0.00125	0.65
S26-TRIB10-A2-TRIBA-(1)	C	C-7	Restoration	Ephemeral	165	1.46	0.00125	0.30
S26-TRIB11-(1)	C	C-7	Enhancement	Ephemeral	459	1.43	0.00125	0.82
S26-TRIB11-(2)	C	C-7	Restoration	Ephemeral	308	1.53	0.00125	0.59
S26-TRIB12-(1)	C	C-7	Restoration	Ephemeral	378	1.54	0.00125	0.73
S26-TRIB13-(1)	C	C-8	Restoration	Ephemeral	1,202	1.52	0.00125	2.28
S26-TRIB13-(2)	C	C-8	Re-Establishment	Ephemeral	341	1.54	0.00125	0.66
S26-TRIB13-(3)	C	C-7	Restoration	Ephemeral	541	1.53	0.00125	1.03
S26-TRIB14-(1)	C	C-8	Restoration	Ephemeral	1,076	1.54	0.00125	2.07
S26-TRIB15-(1)	C	C-11	Enhancement	Ephemeral	152	1.44	0.00125	0.27
S26-TRIB15-(2)	C	C-11	Restoration	Ephemeral	976	1.52	0.00125	1.85

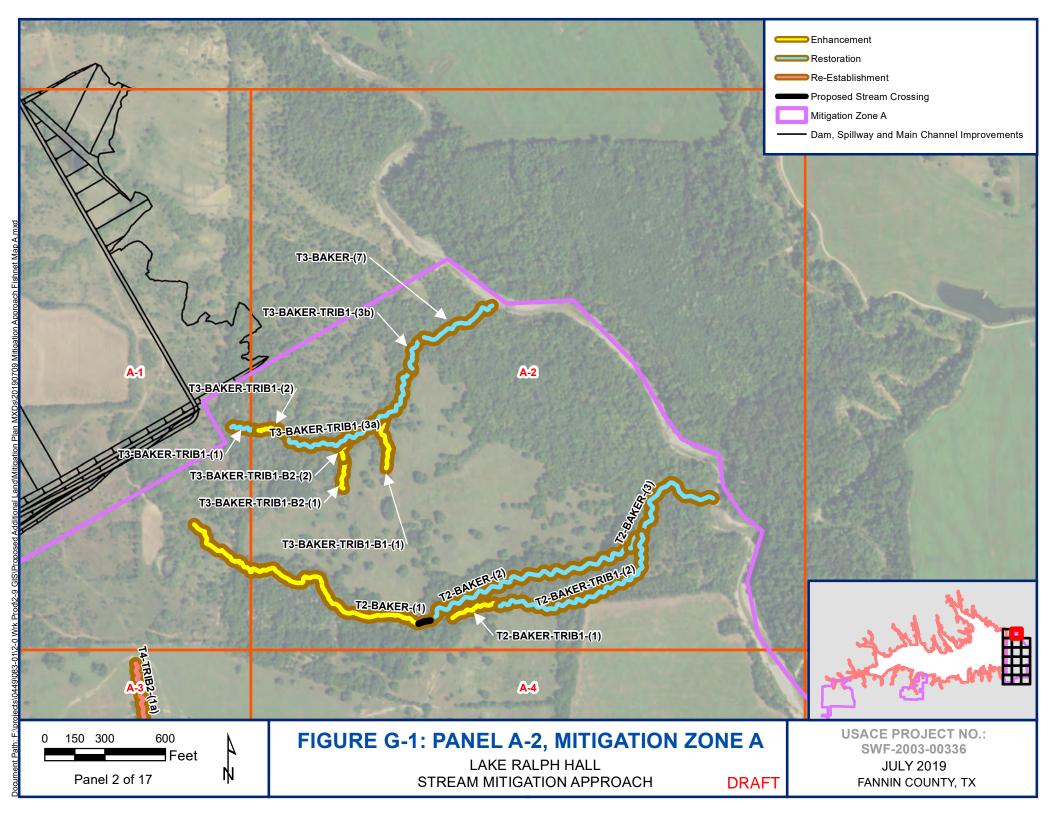
Proposed Stream Assessment Reach (SAR) Name	Mitigation Zone	Panel No.	Mitigation Type	Stream Type	Proposed SAR Length (Linear Feet) ²	Proposed Total Stream Functional Capacity Index (FCI) ³	Multiplication Factor ⁴	Proposed Stream Functional Capacity (FCU) Total at Maturity ⁵
S26-TRIB15-(3)	С	C-11	Re-Establishment	Ephemeral	931	1.78	0.00125	2.07
S26-TRIB16-(4)	С	C-11	Restoration	Ephemeral	176	1.55	0.00125	0.34
S26-TRIB16-(5)	С	C-11	Enhancement	Ephemeral	600	1.43	0.00125	1.07
S26-TRIB16-A1-(1)	С	C-11	Restoration	Ephemeral	596	1.54	0.00125	1.15
S26-TRIB17-(1)	С	C-11	Enhancement	Ephemeral	252	1.44	0.00125	0.45
S26-TRIB17-(2)	С	C-11	Enhancement	Ephemeral	120	1.40	0.00125	0.21
S26-TRIB17-(3)	С	C-11	Enhancement	Ephemeral	134	1.44	0.00125	0.24
S26-TRIB18-(5)	С	C-11	Restoration	Ephemeral	542	1.54	0.00125	1.04
S26-TRIB19-(2)	С	C-14	Restoration	Ephemeral	794	1.77	0.00125	1.76
S26-TRIB19-A1-(1)	С	C-14	Restoration	Ephemeral	173	1.52	0.00125	0.33
C Subtotal	-	-	-	-	84,114	-	-	170.57
Subtotal	-	-	-	Intermittent / Perennial Pools	17,894	-	-	130.36
Subtotal	-	-	-	Ephemeral	252,878	-	-	510.59
TOTAL	-	-	-	-	270,772	-	-	640.95

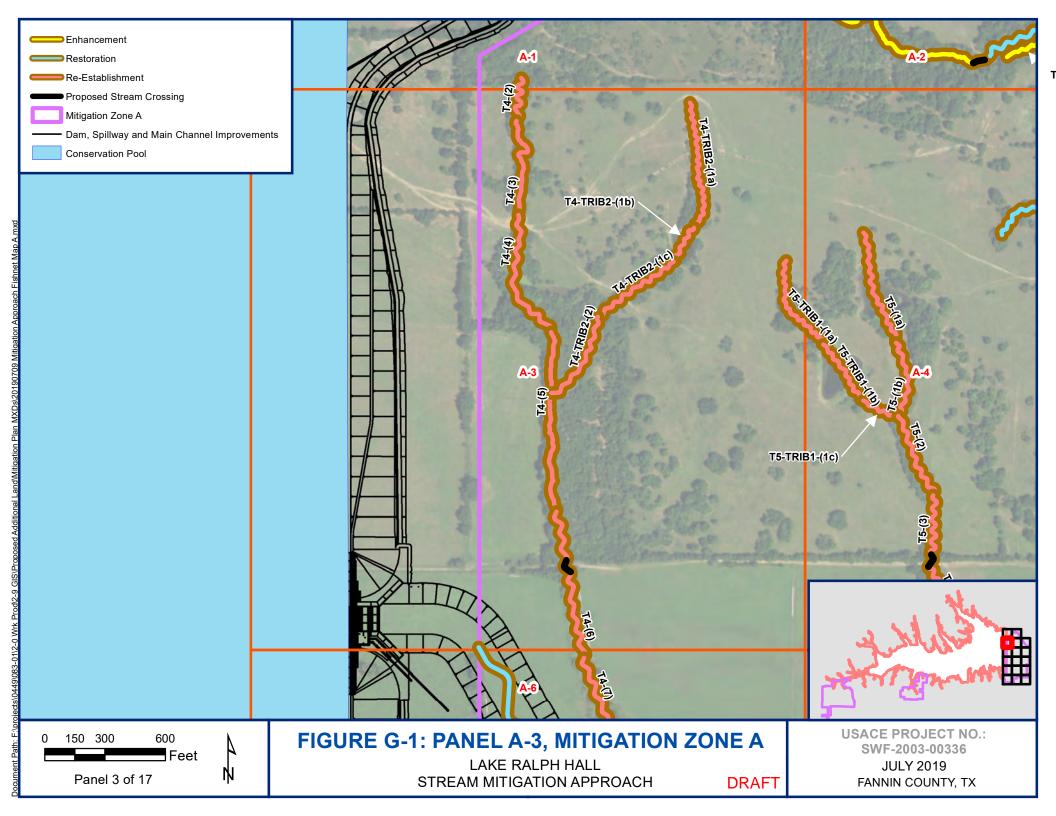
Notes for Table G-2:

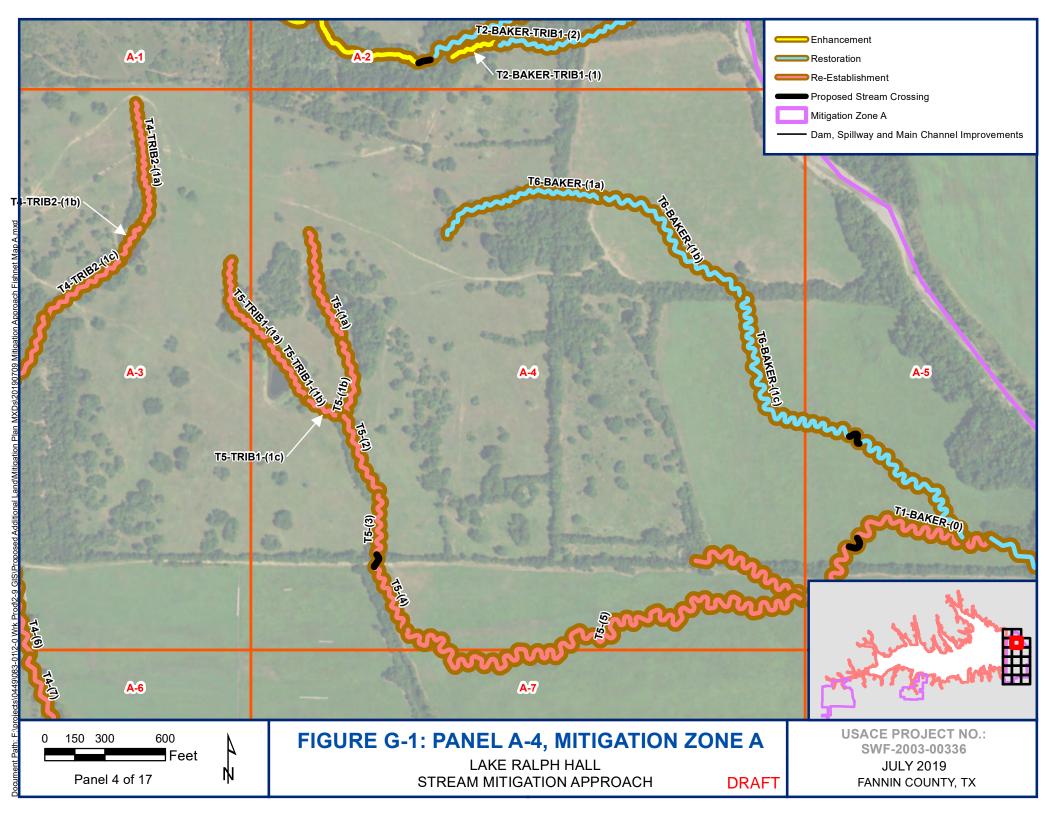
1. The stream lengths and functional capacities listed in this table are from designs for each stream segment. Within this Mitigation Plan UTRWD will use streams from these areas that will provide a minimum of

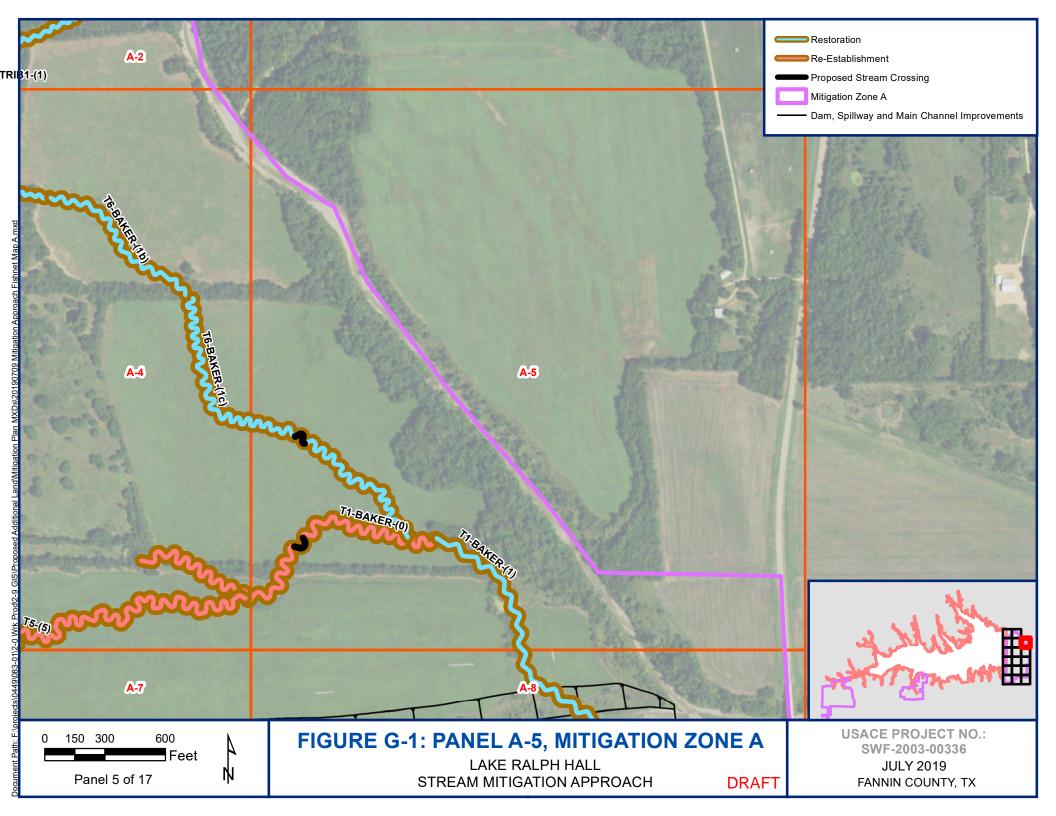

439.59 FCUs, plus the baseline FCUs for the proposed mitigation streams with an appropriate safety factor.

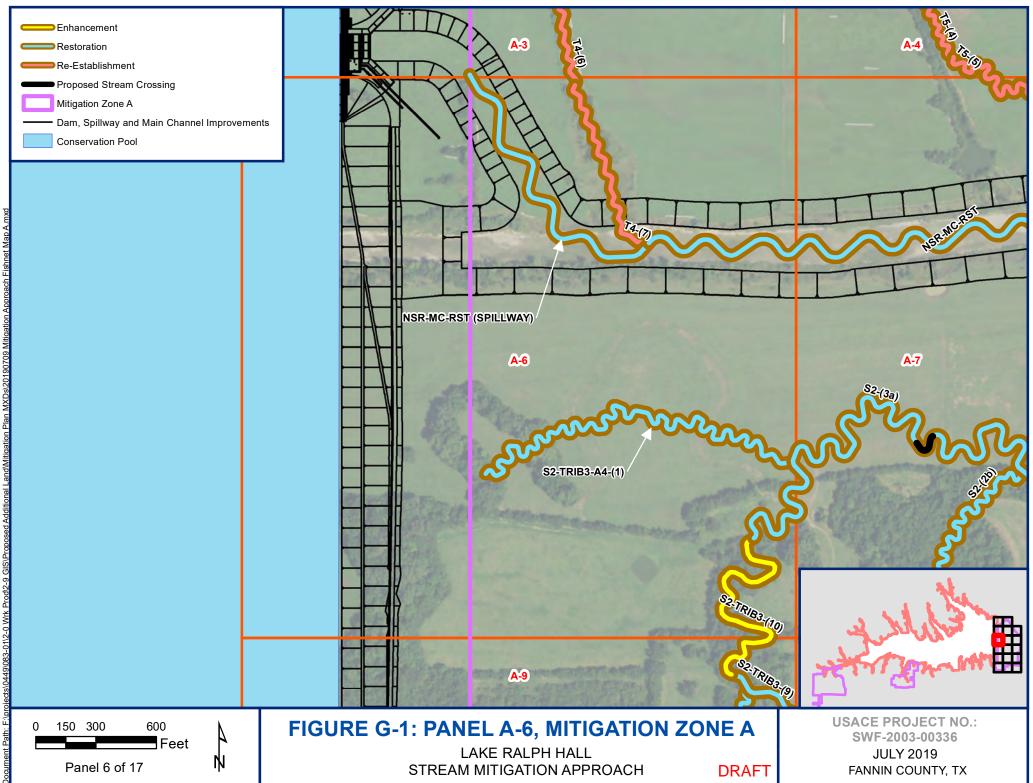

2. Proposed SAR Length is from design plans provided in Appendix F.

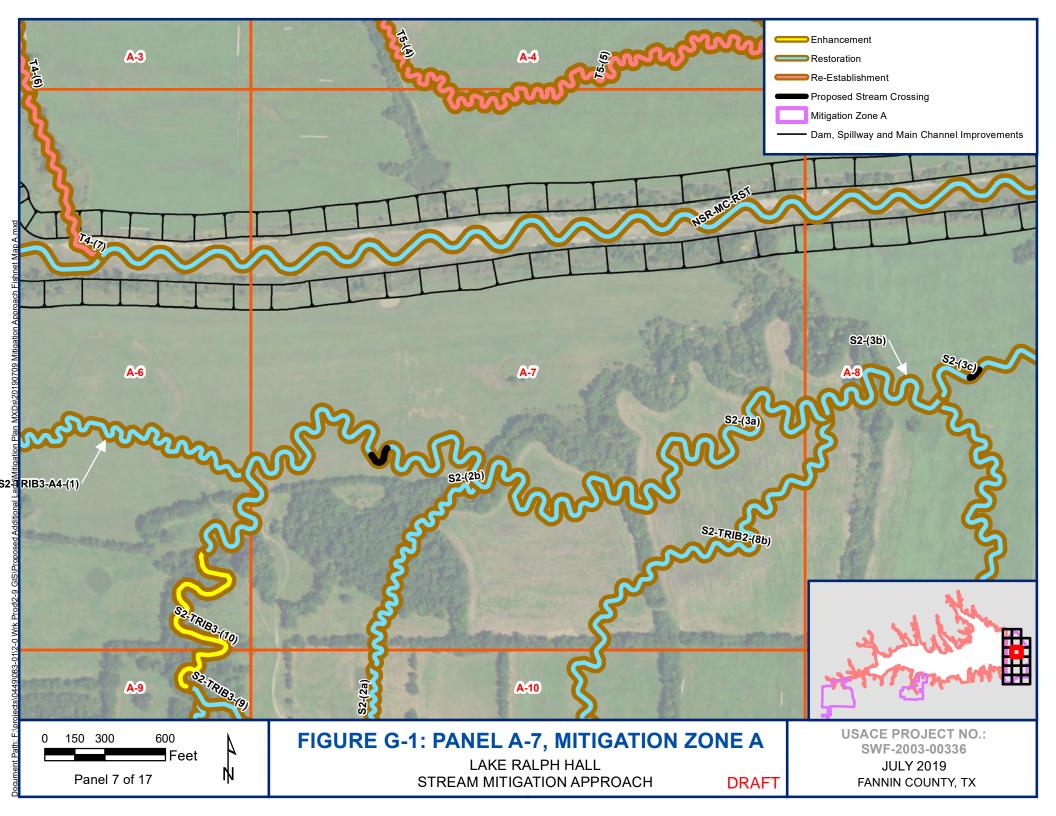

3. FCI values from designs for each stream segment; Shown rounded to the nearest hundredth.

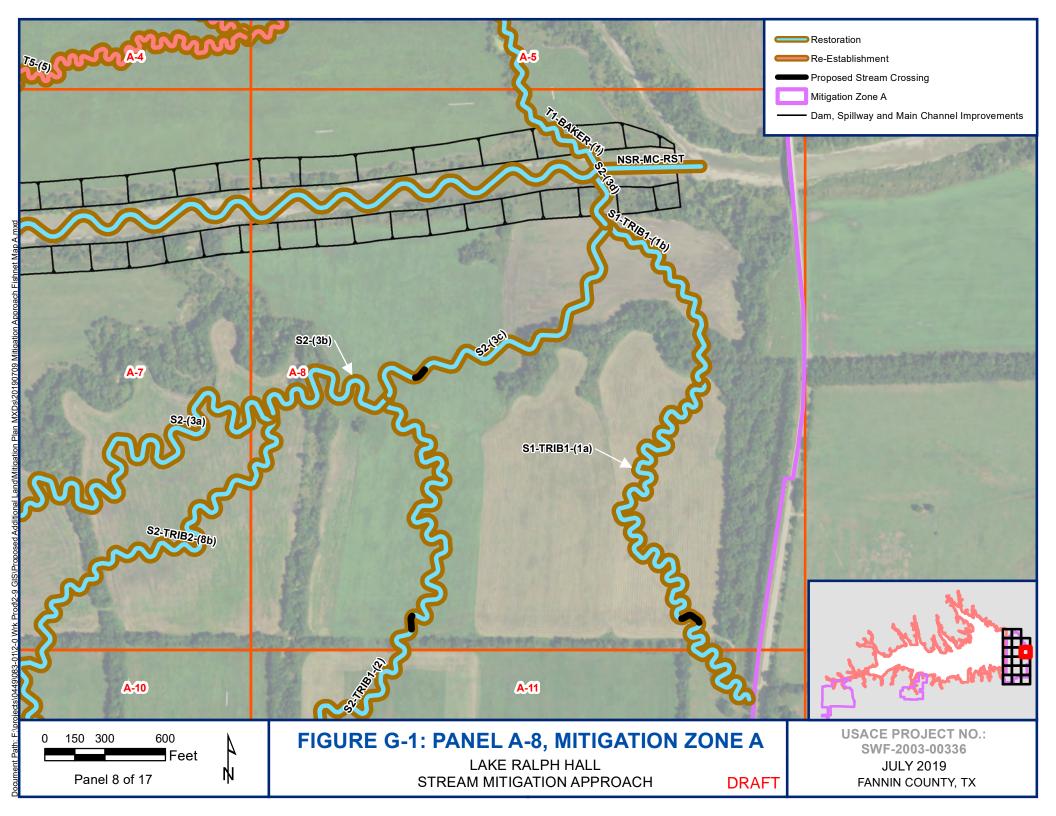

4. Multiplication Factor for stream segment. Perennial = 0.00380; Intermittent with Perennial Pools = 0.00315; Intermittent = 0.00250; Ephemeral = 0.00125.

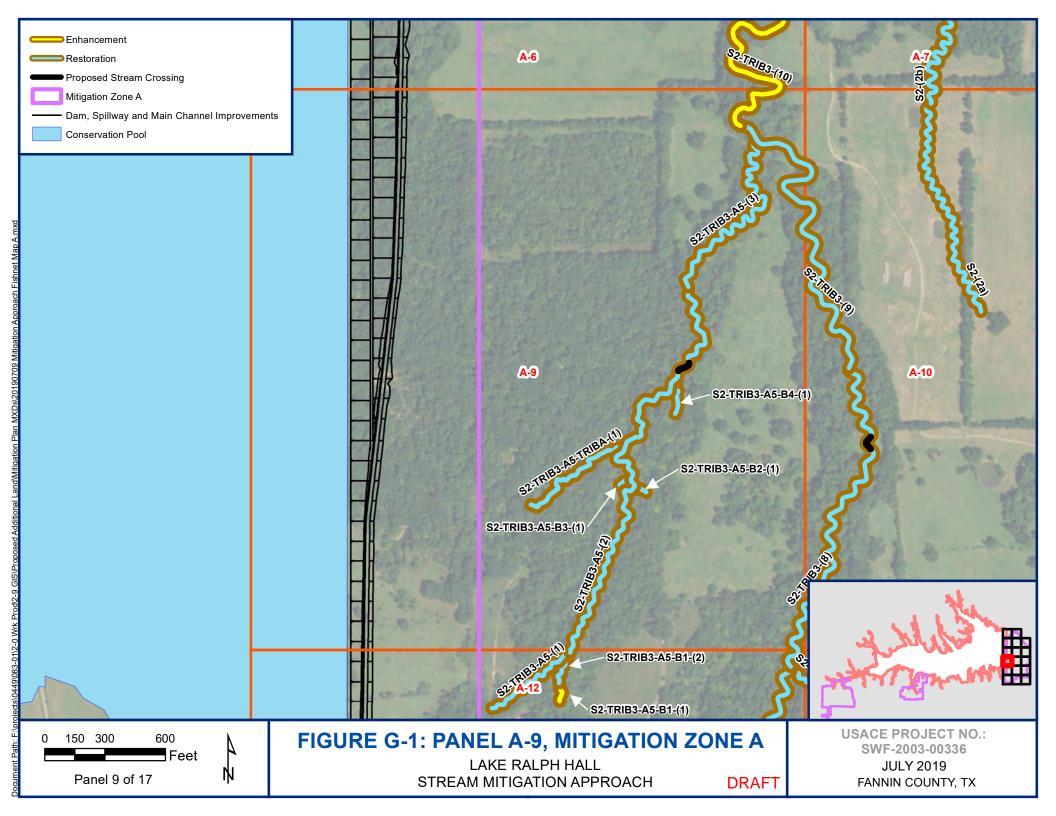

5. FCU = Reach Length, ft * FCI * Multiplication Factor; Shown rounded to the nearest hundredth.

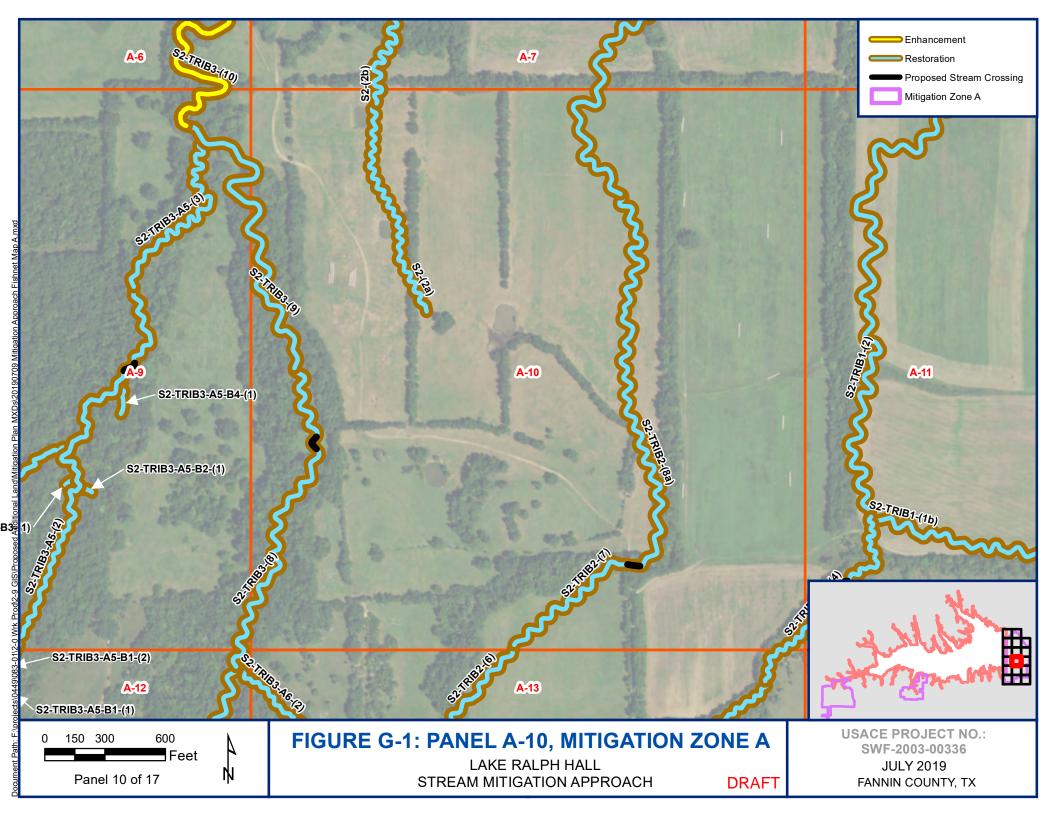


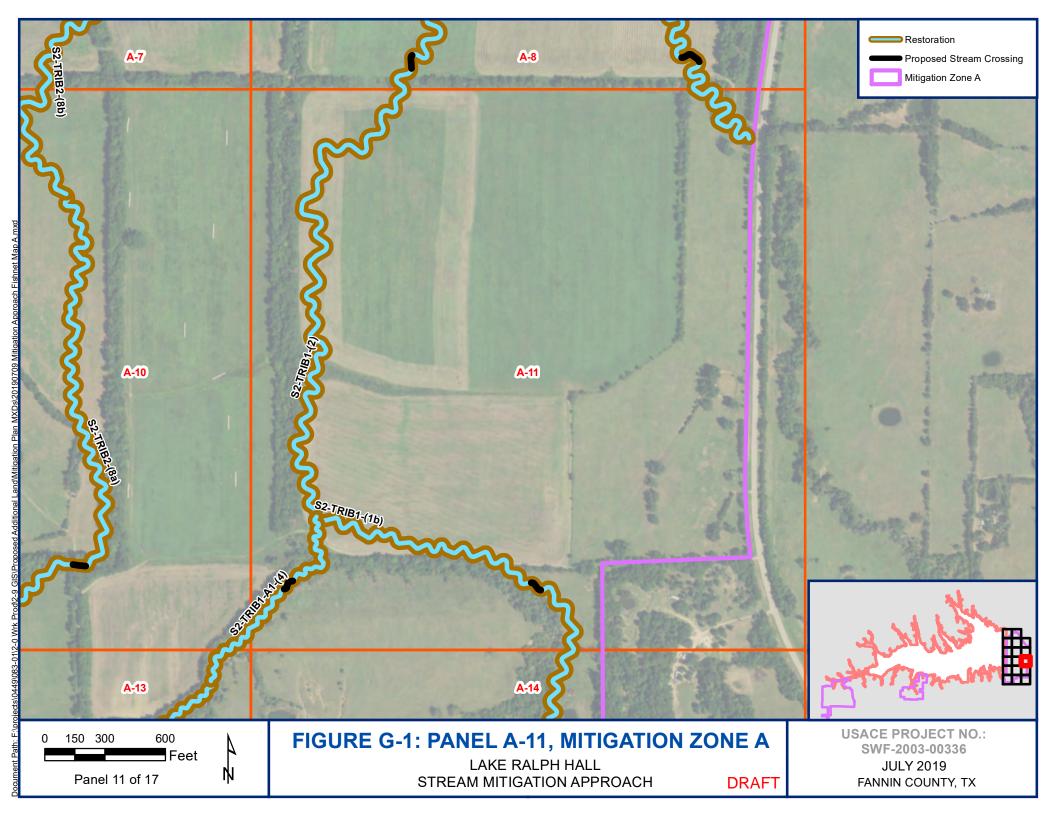


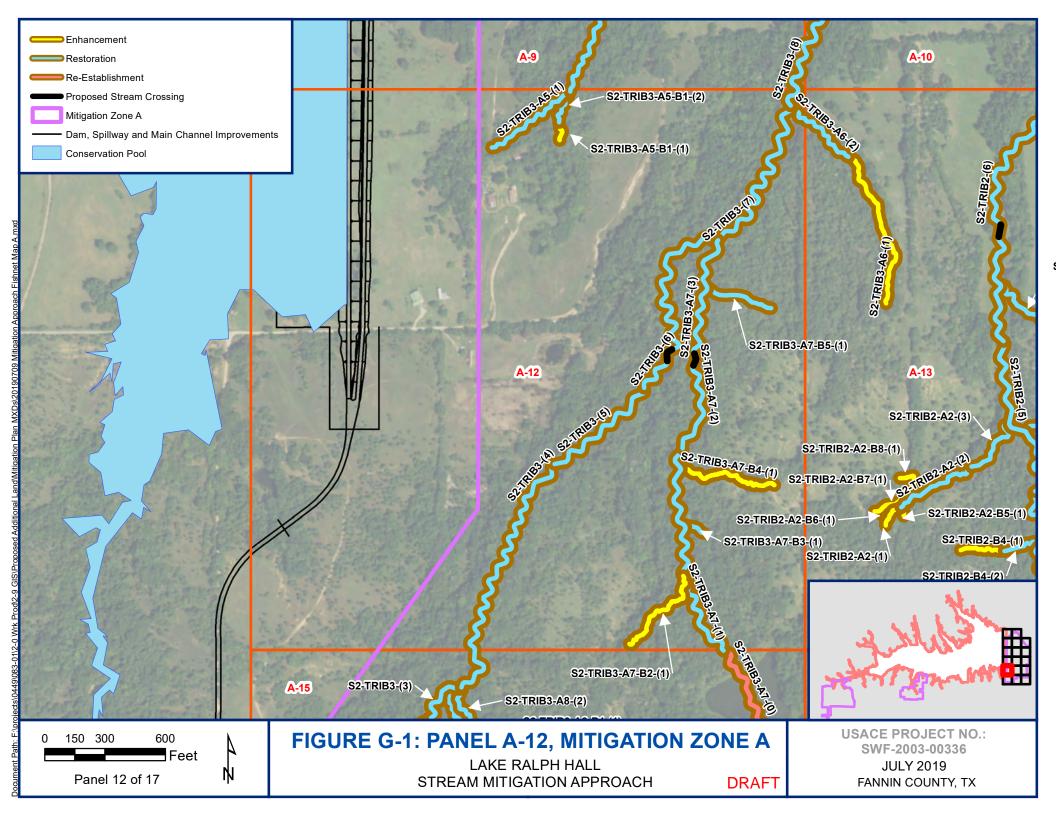


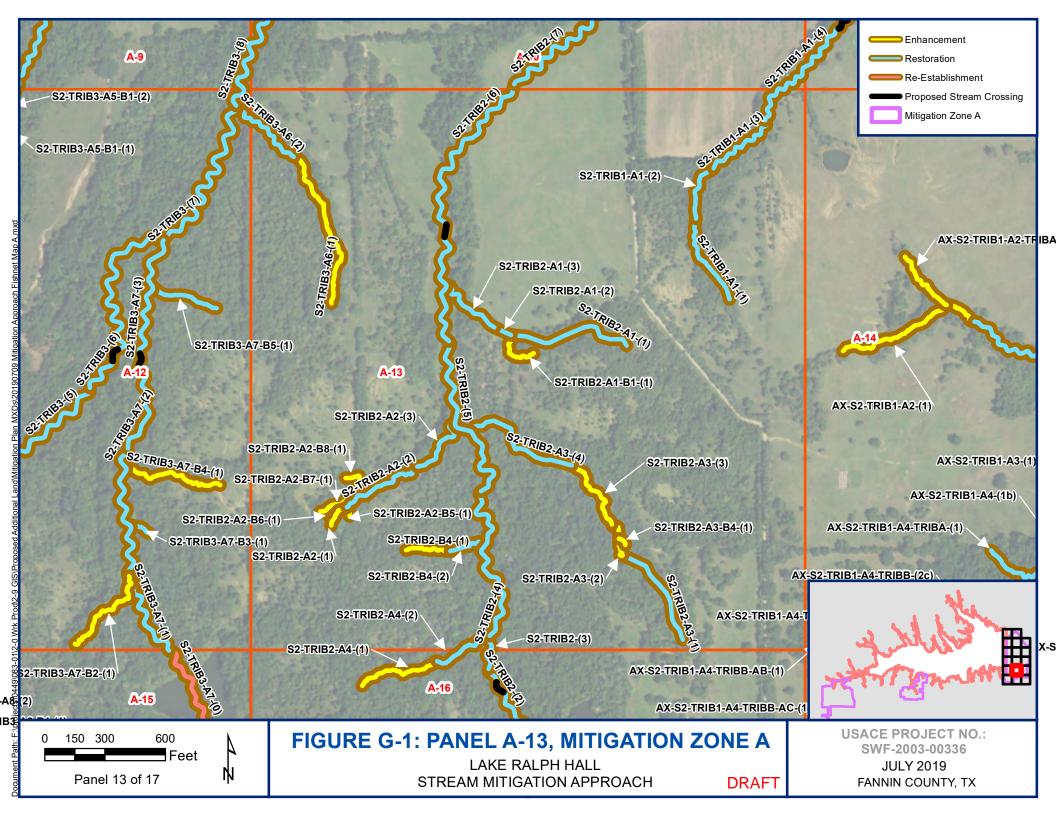


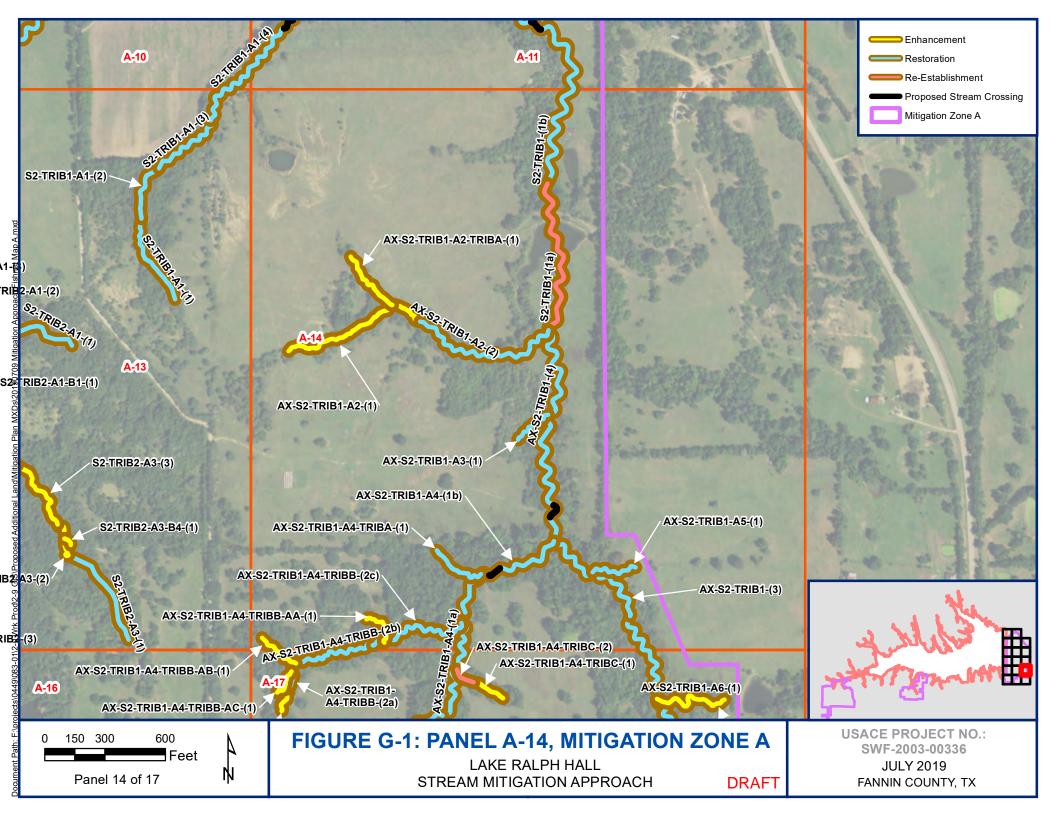


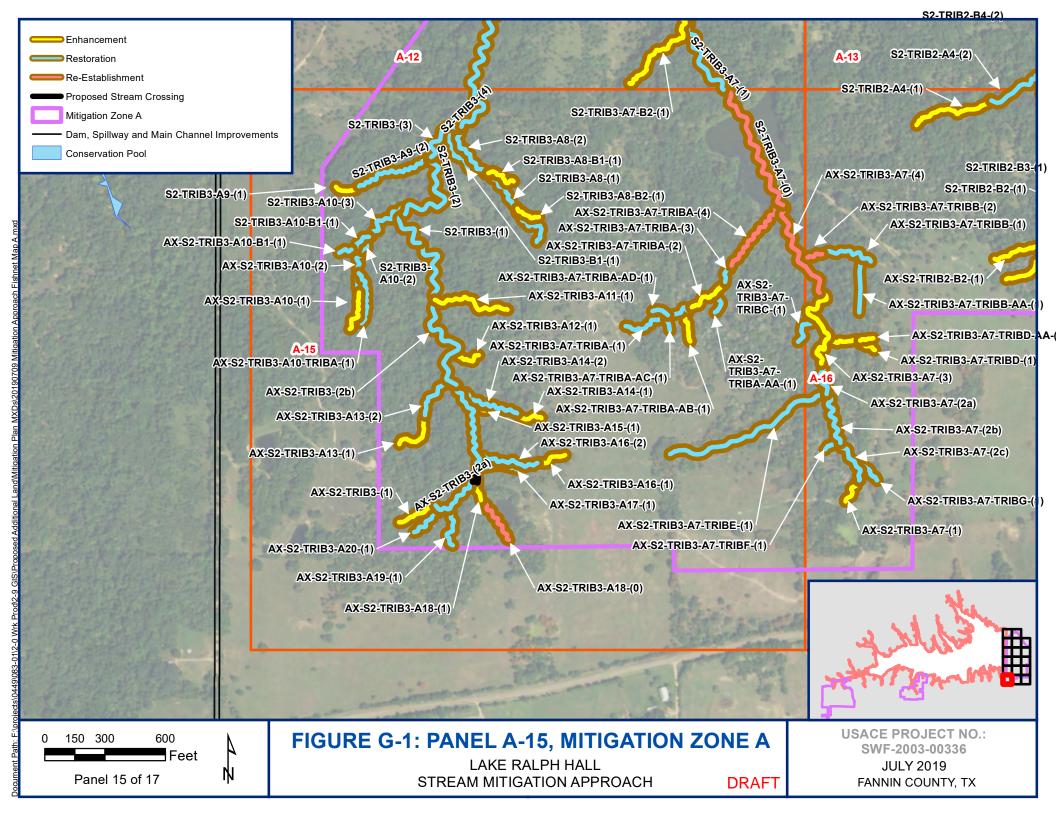


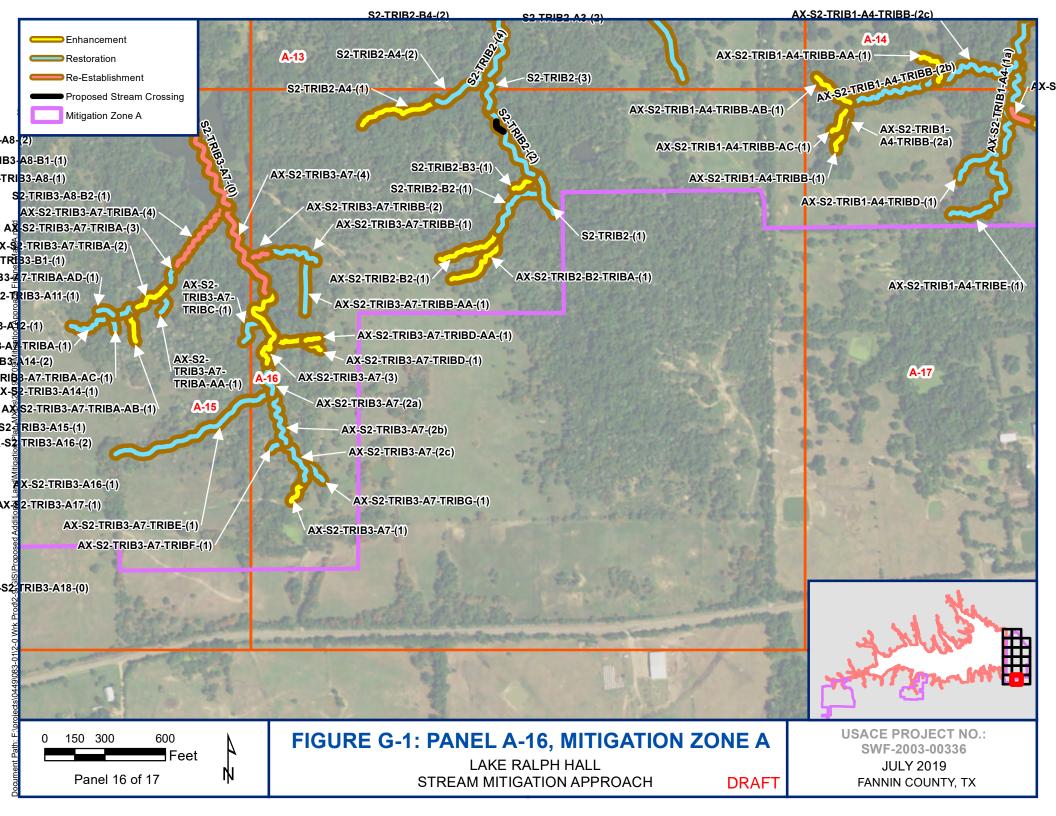


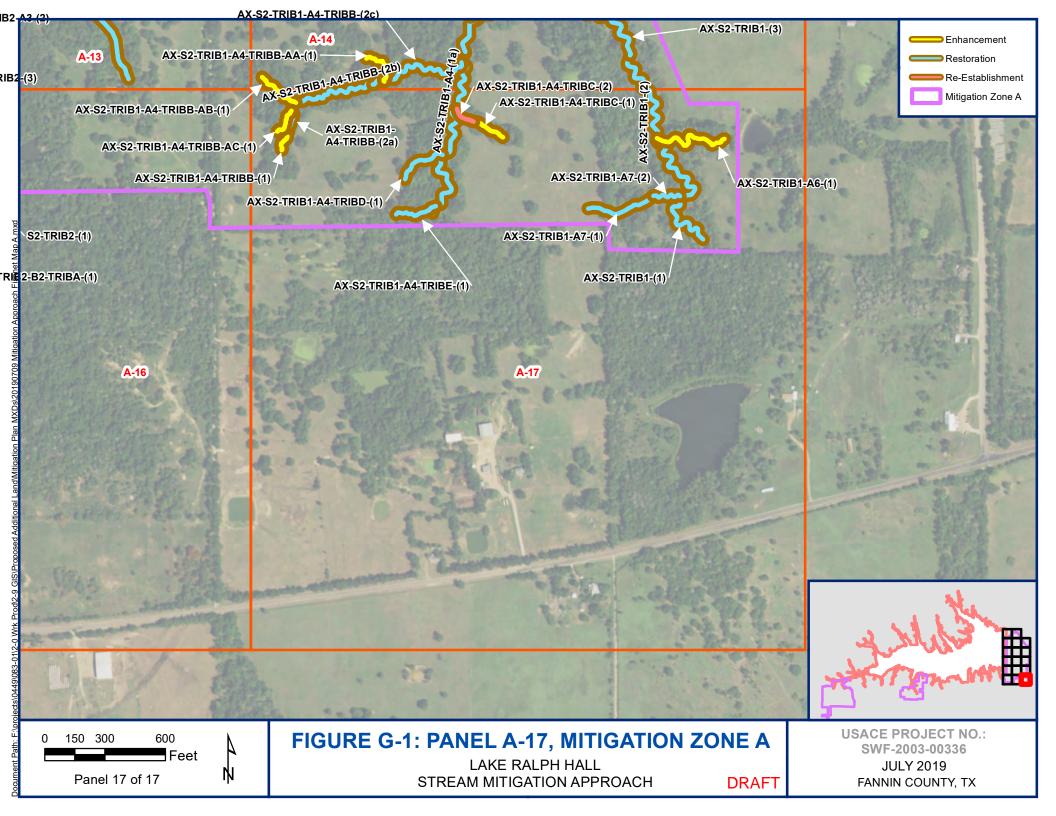


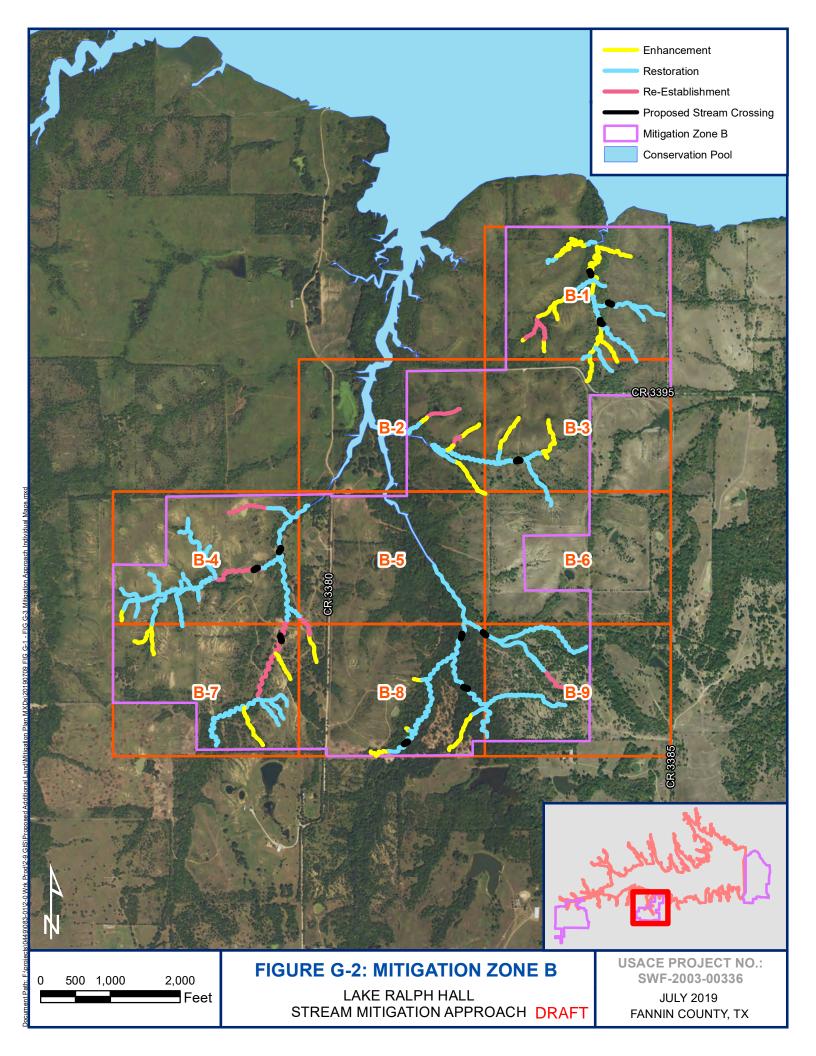


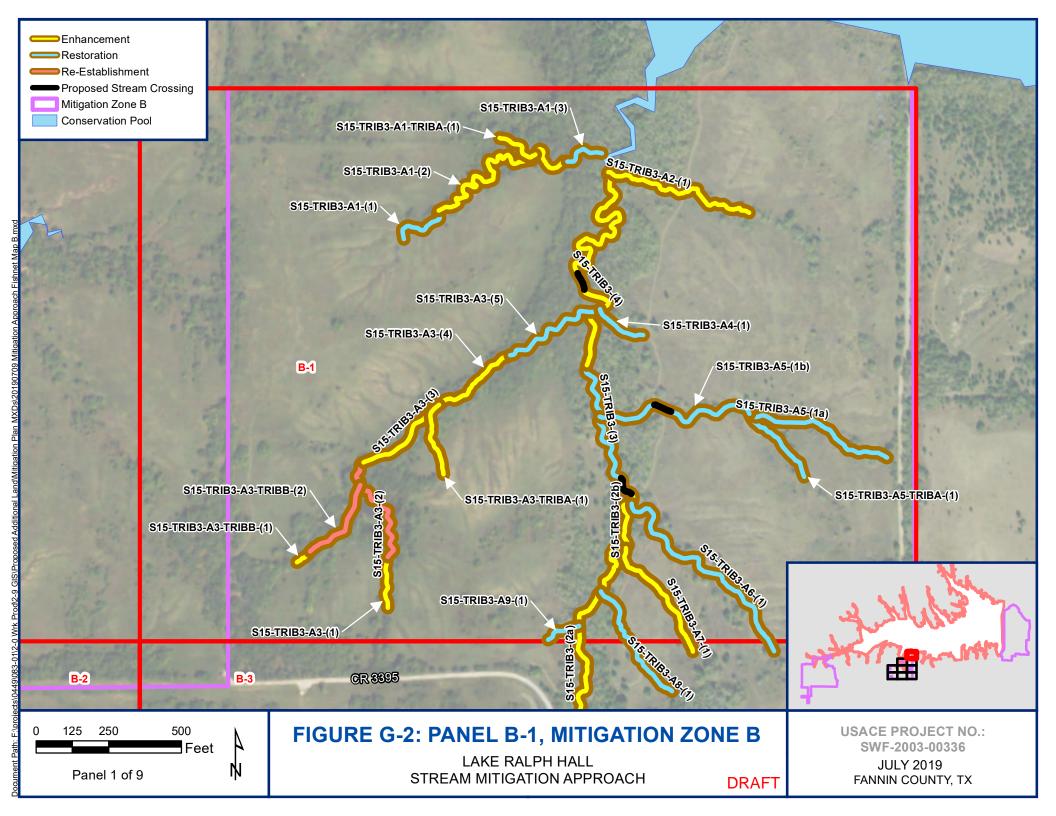


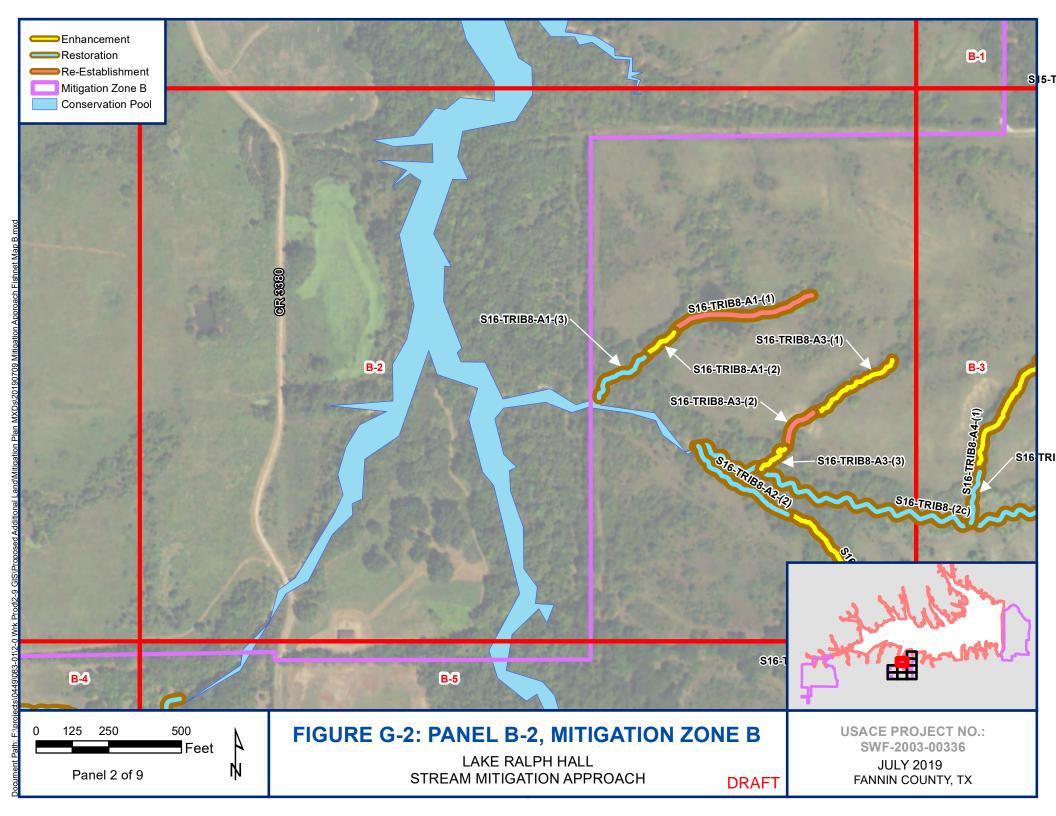


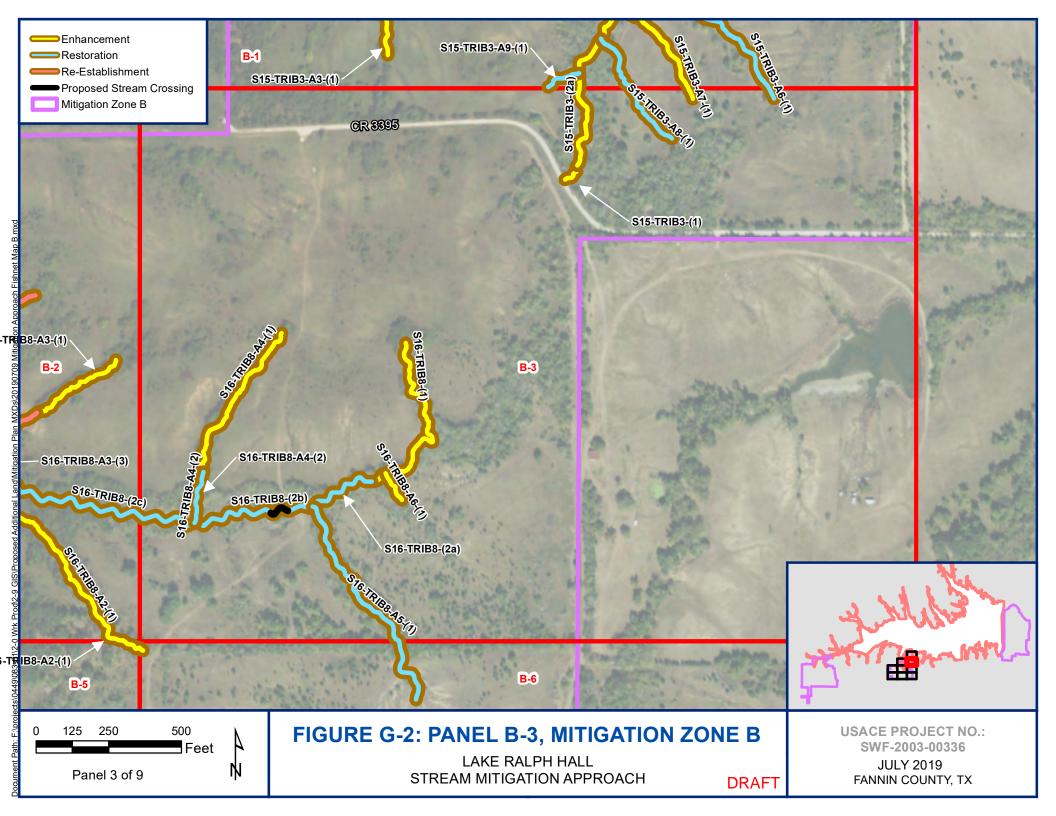


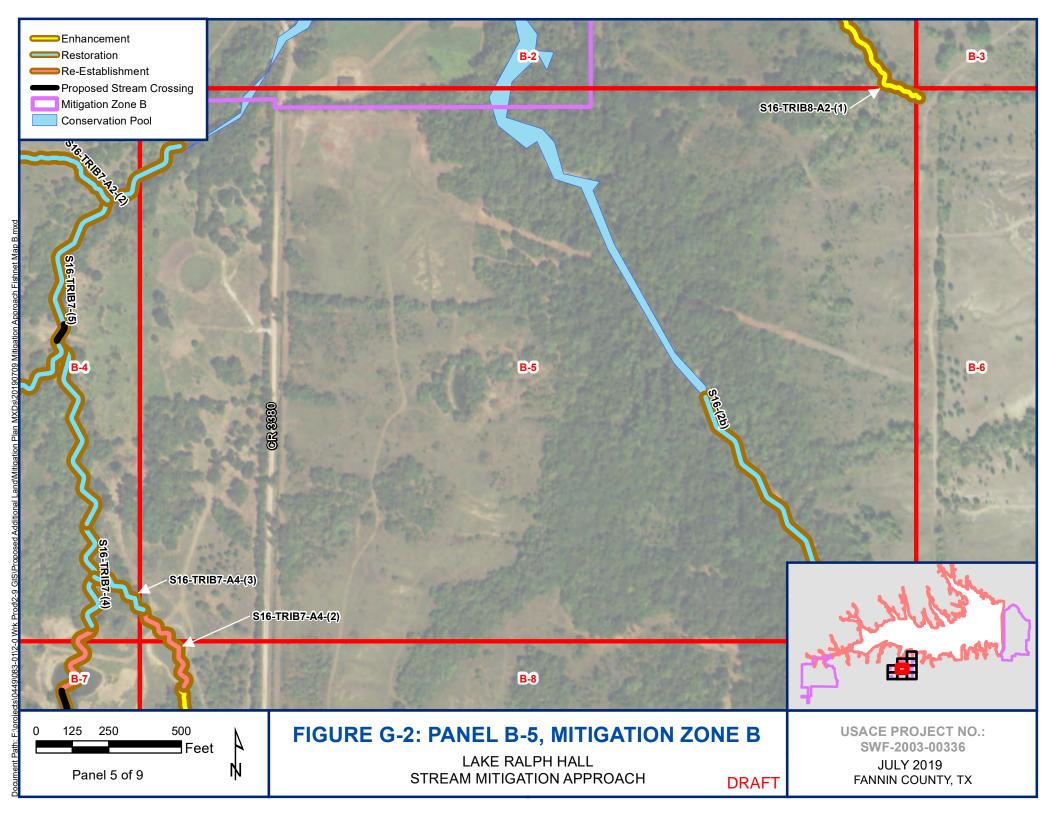


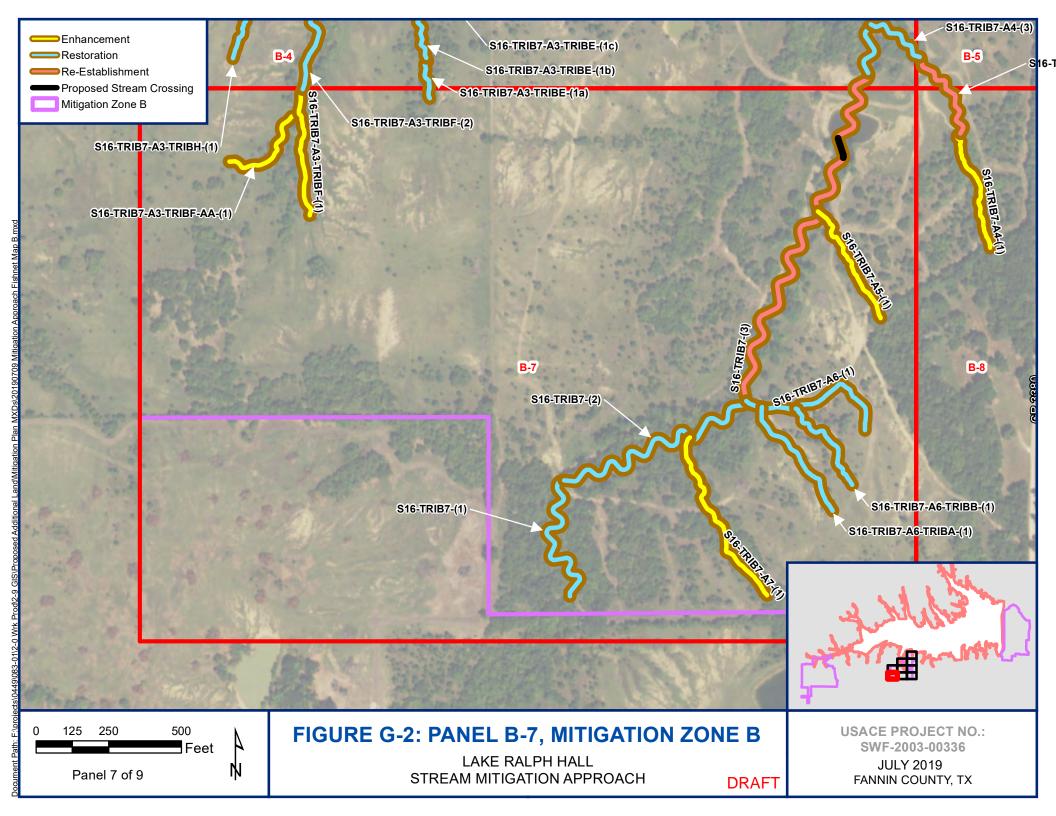


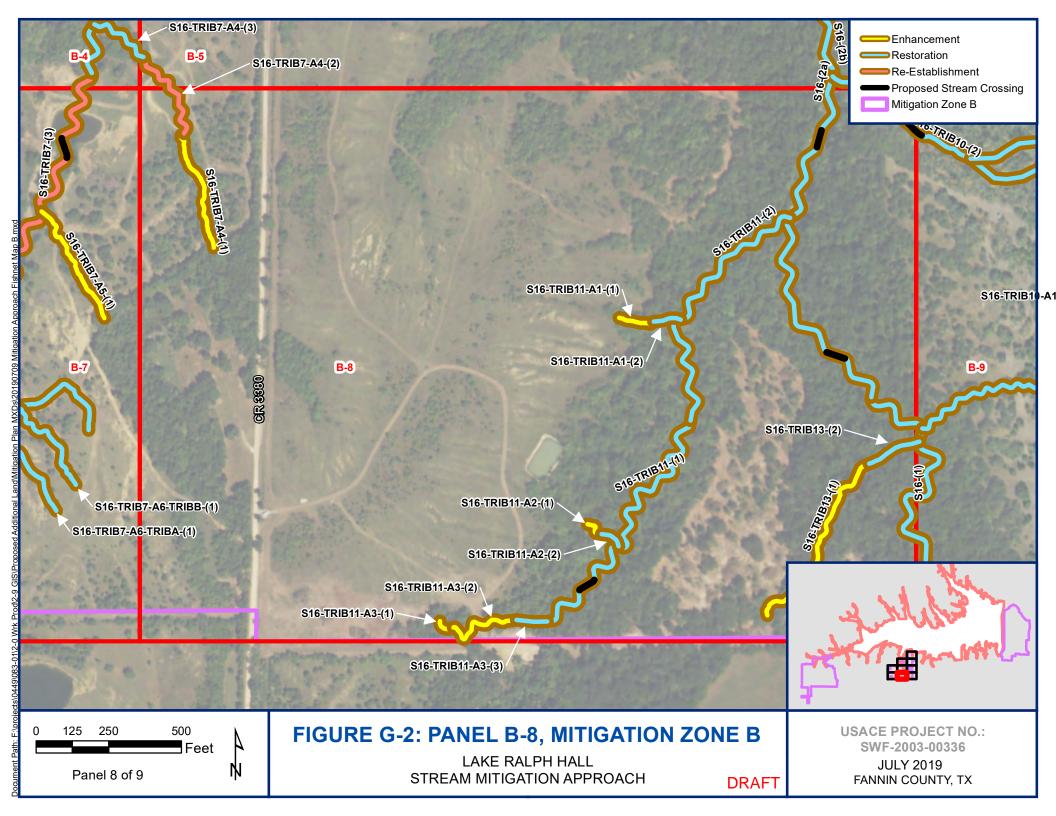


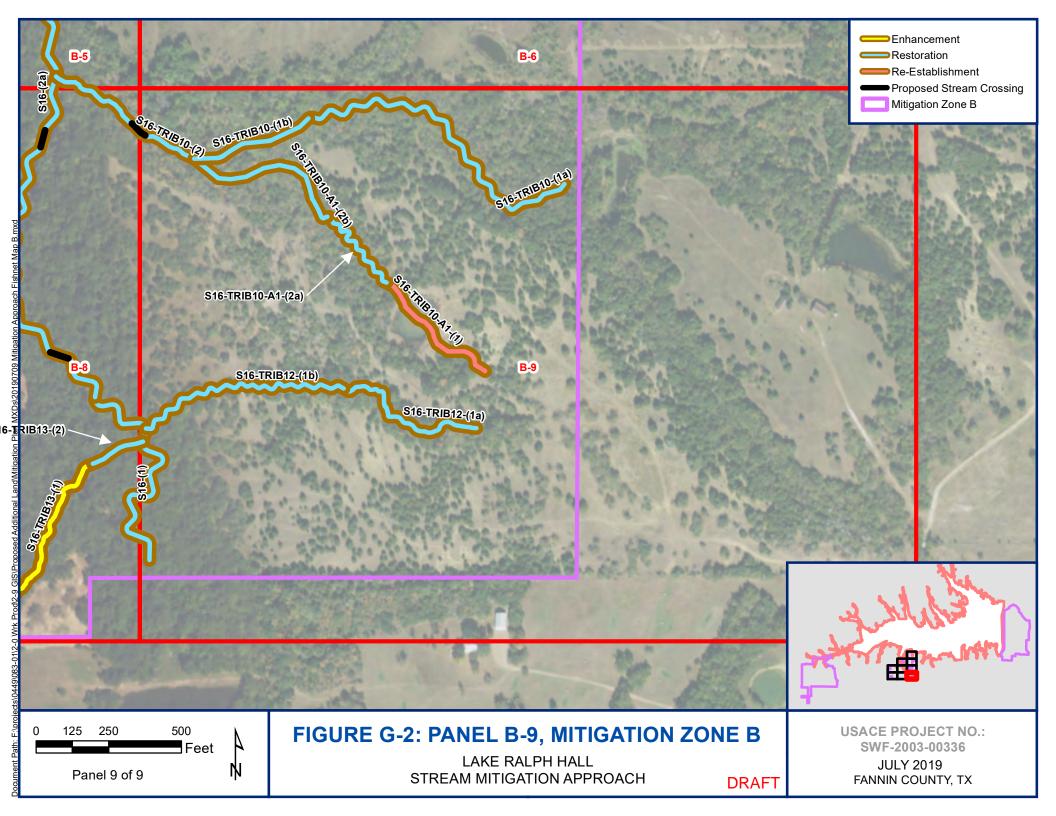


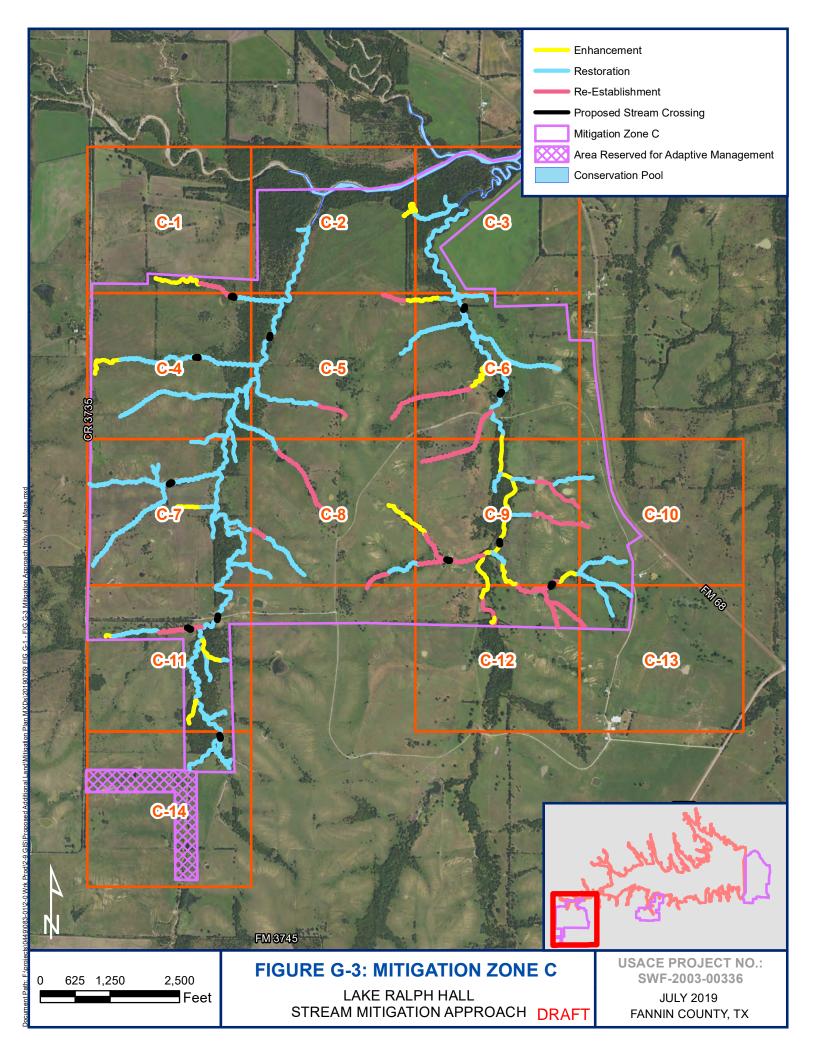


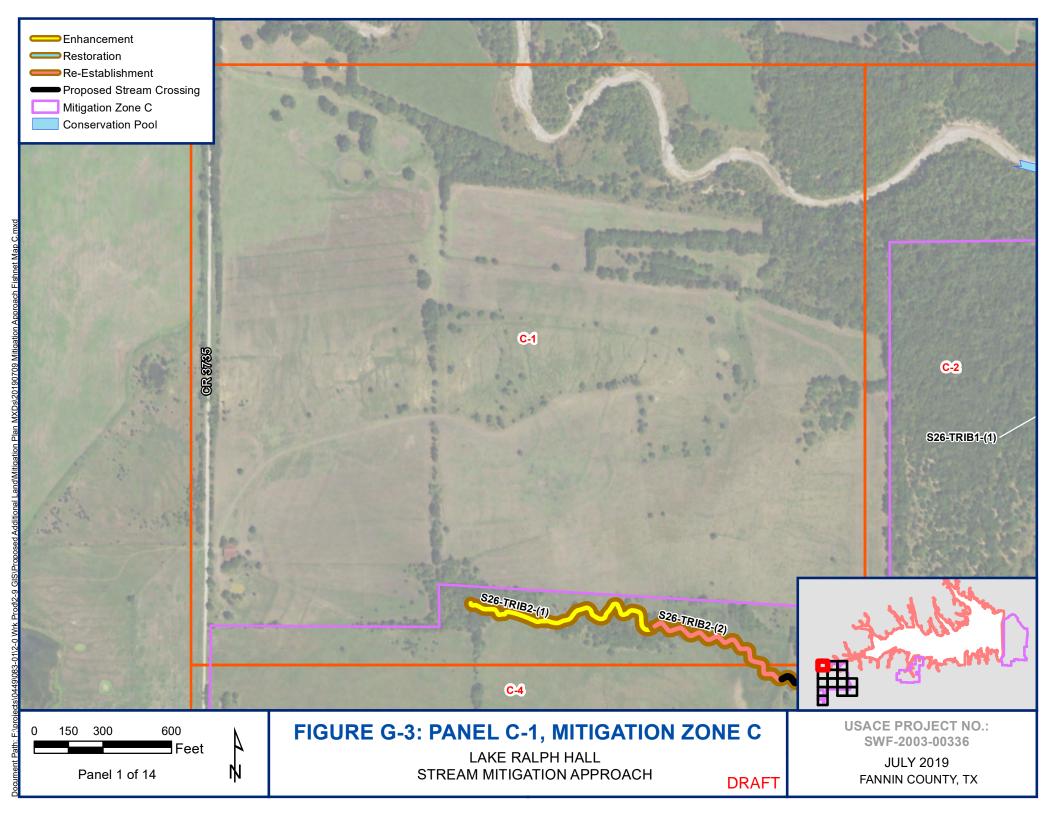


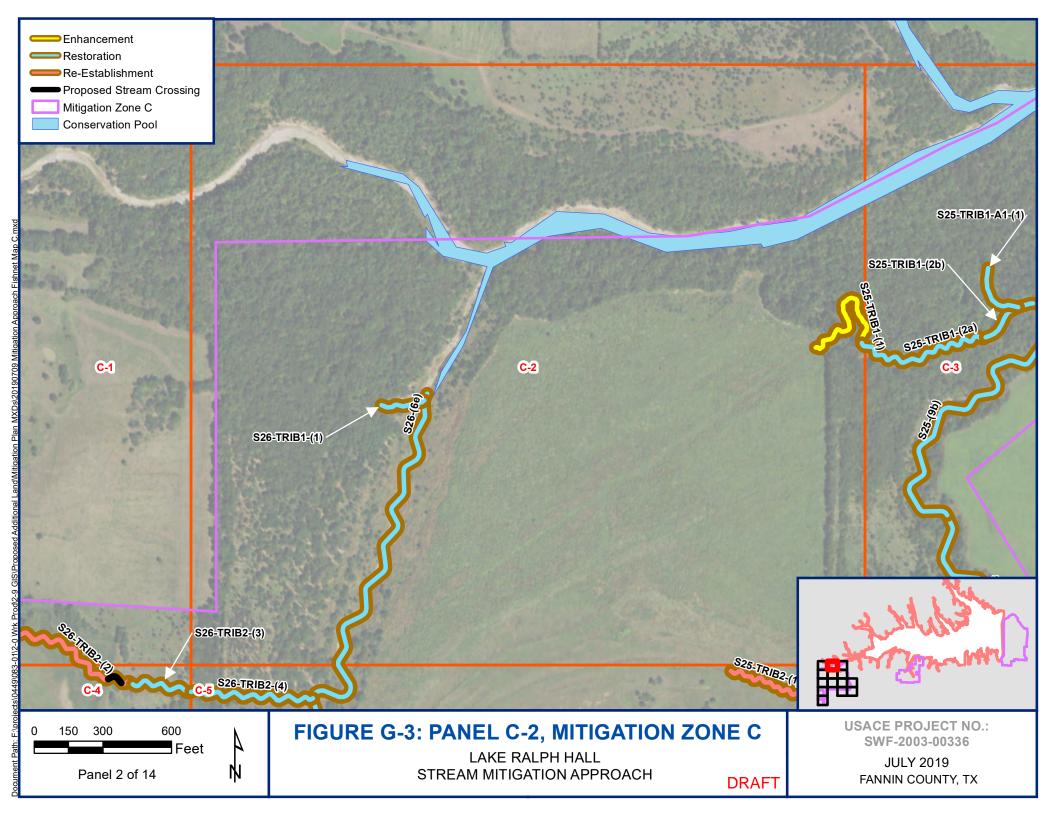


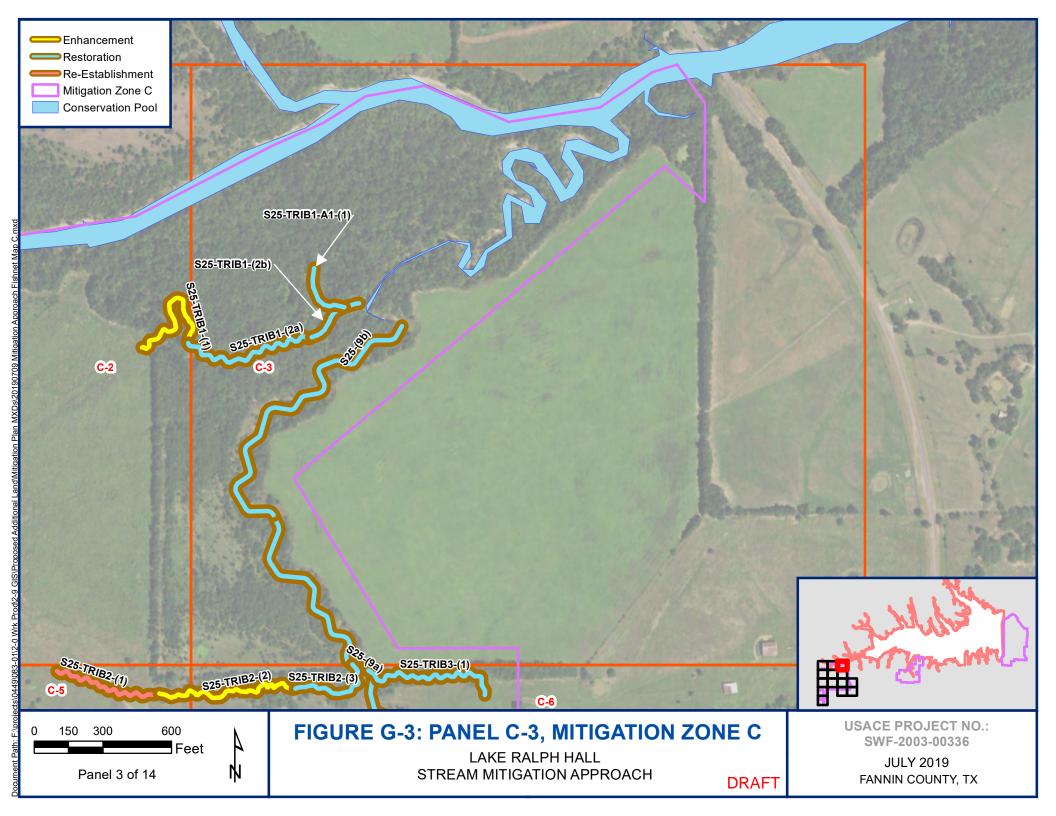


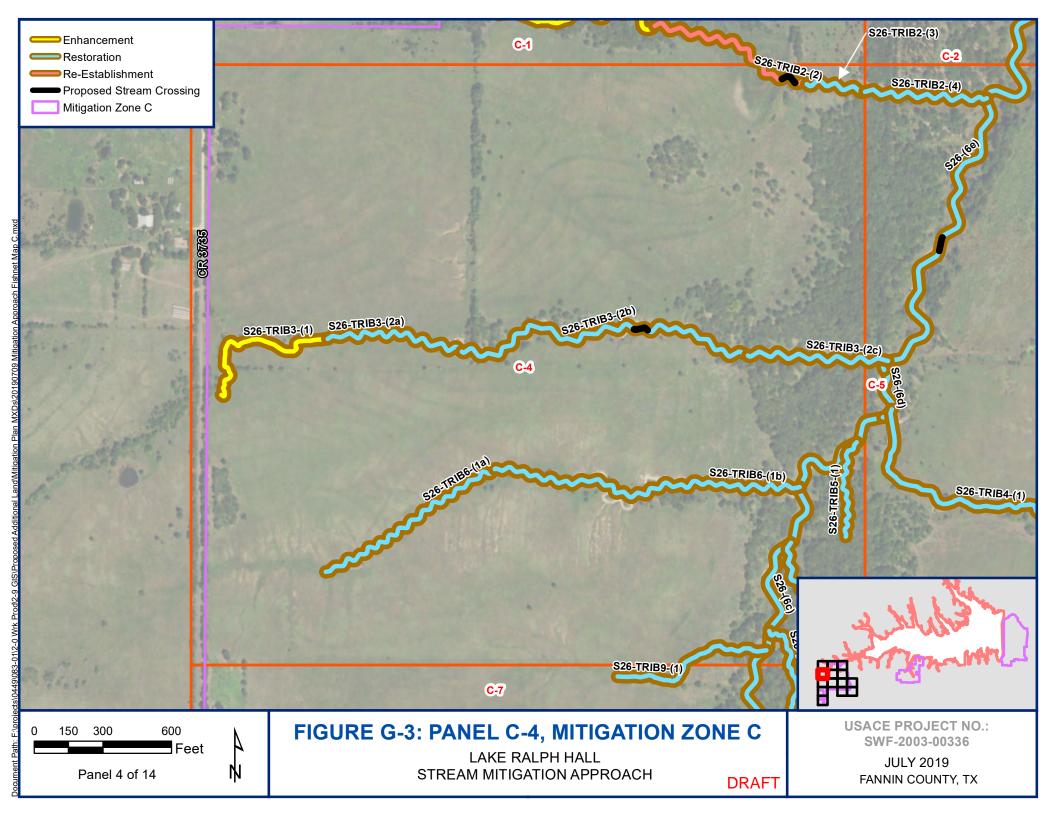




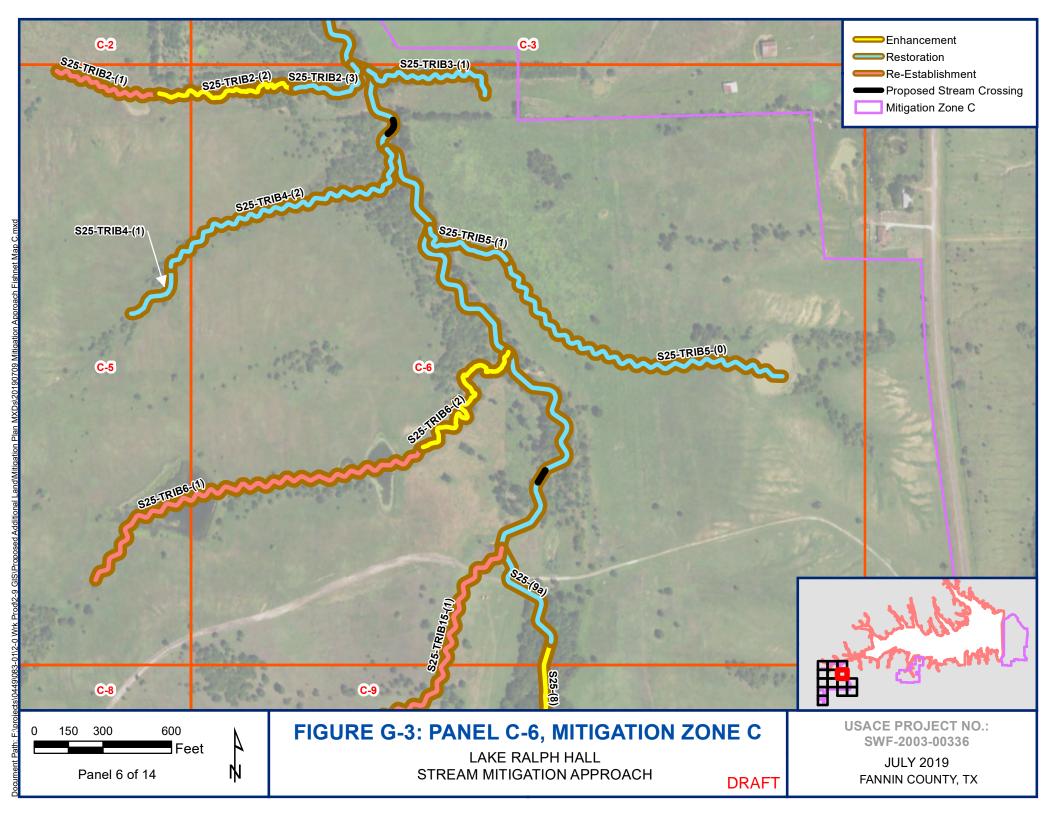


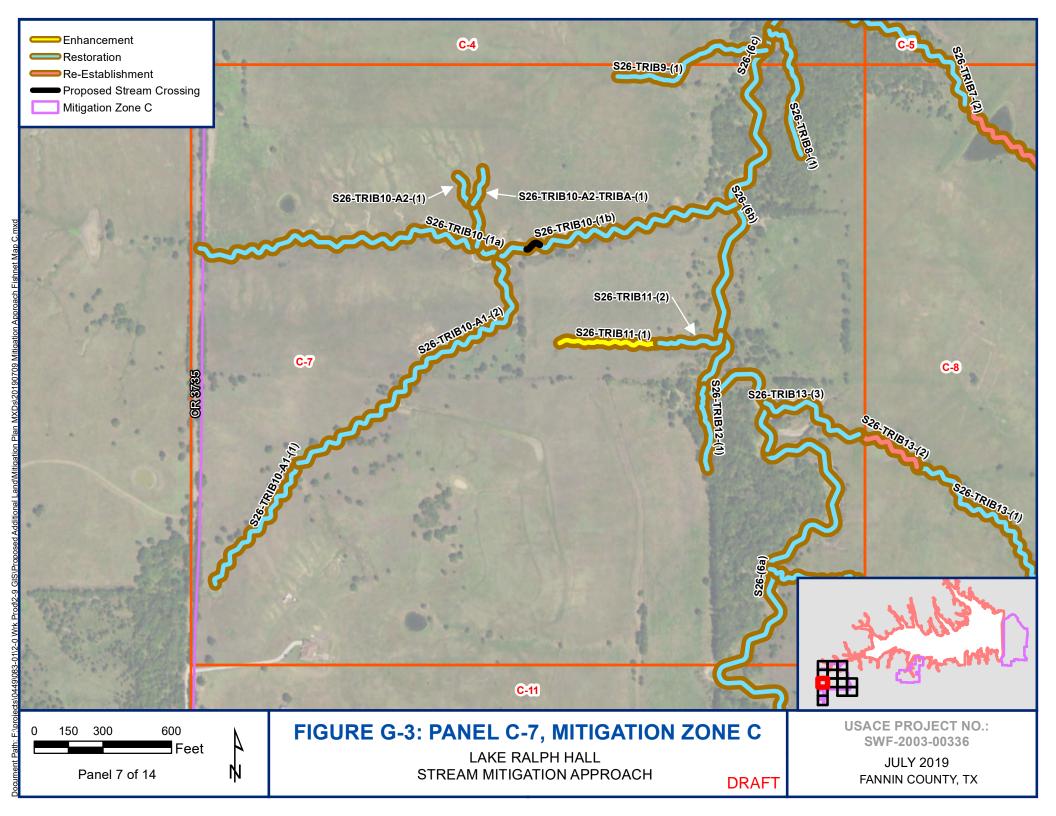


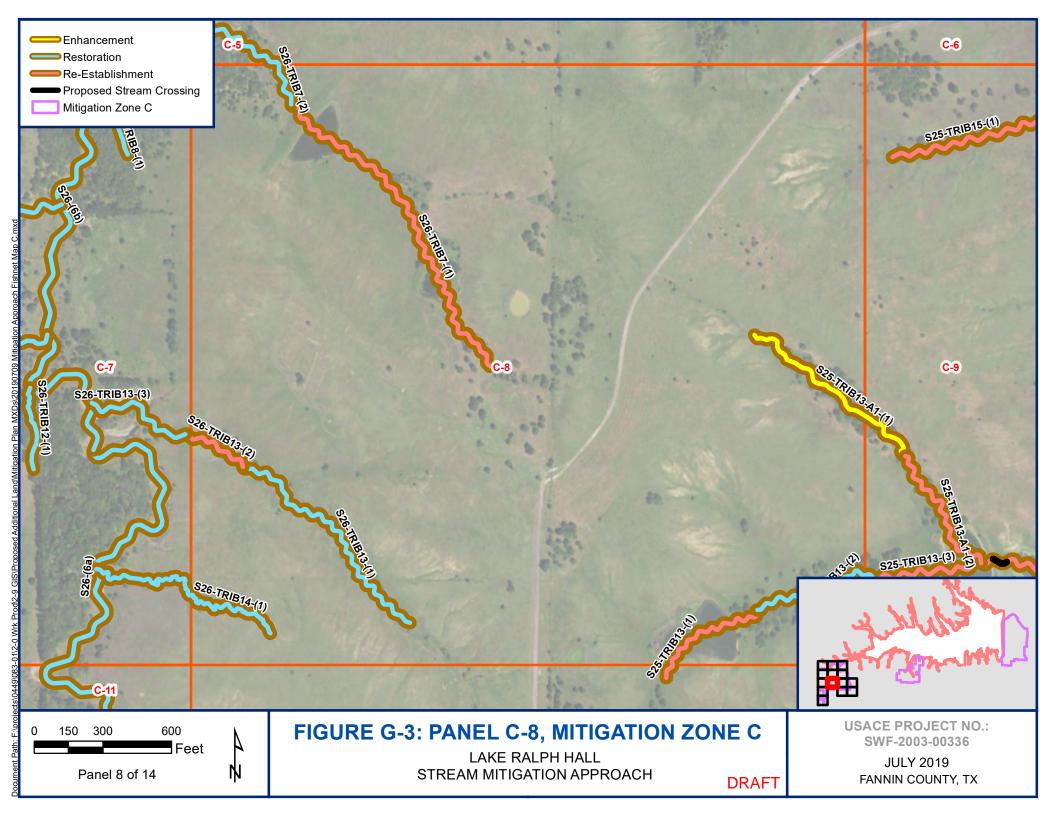


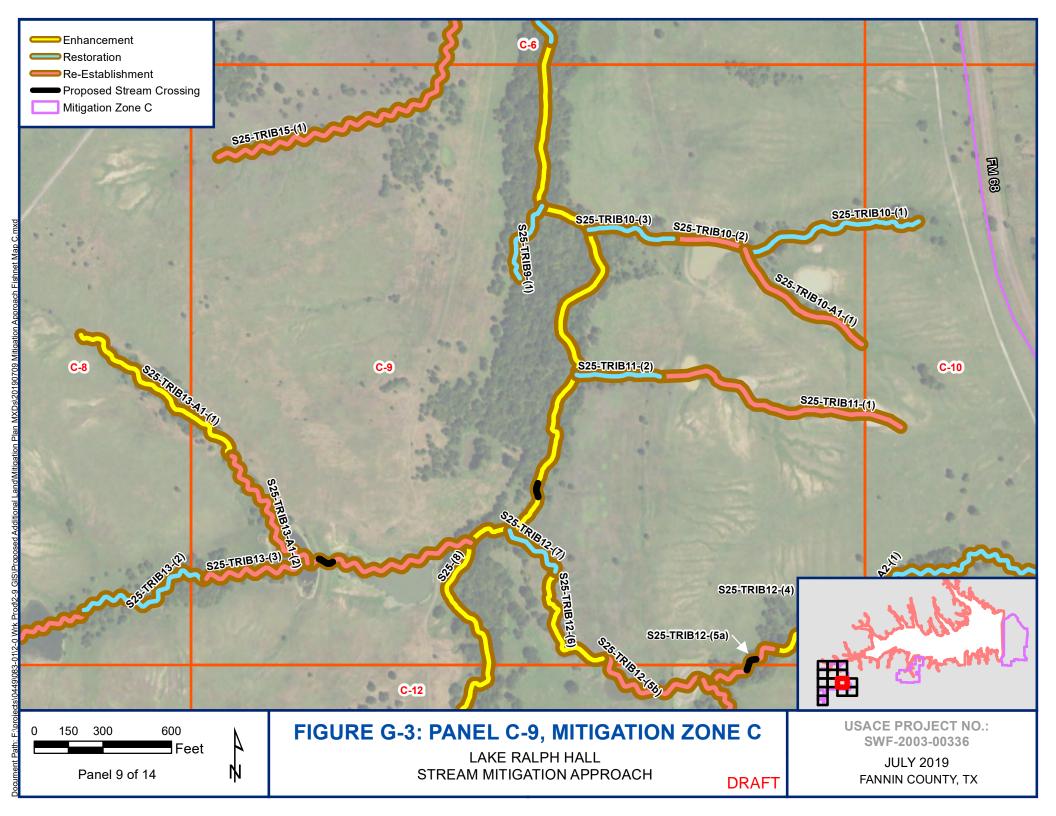


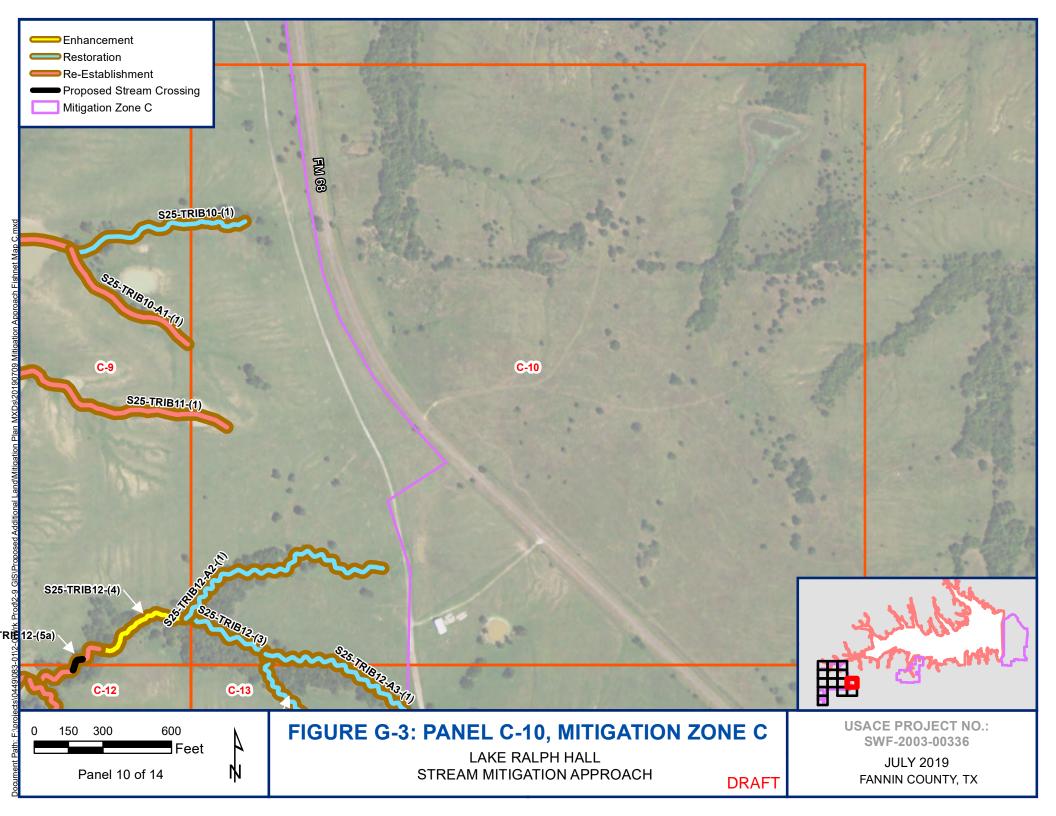


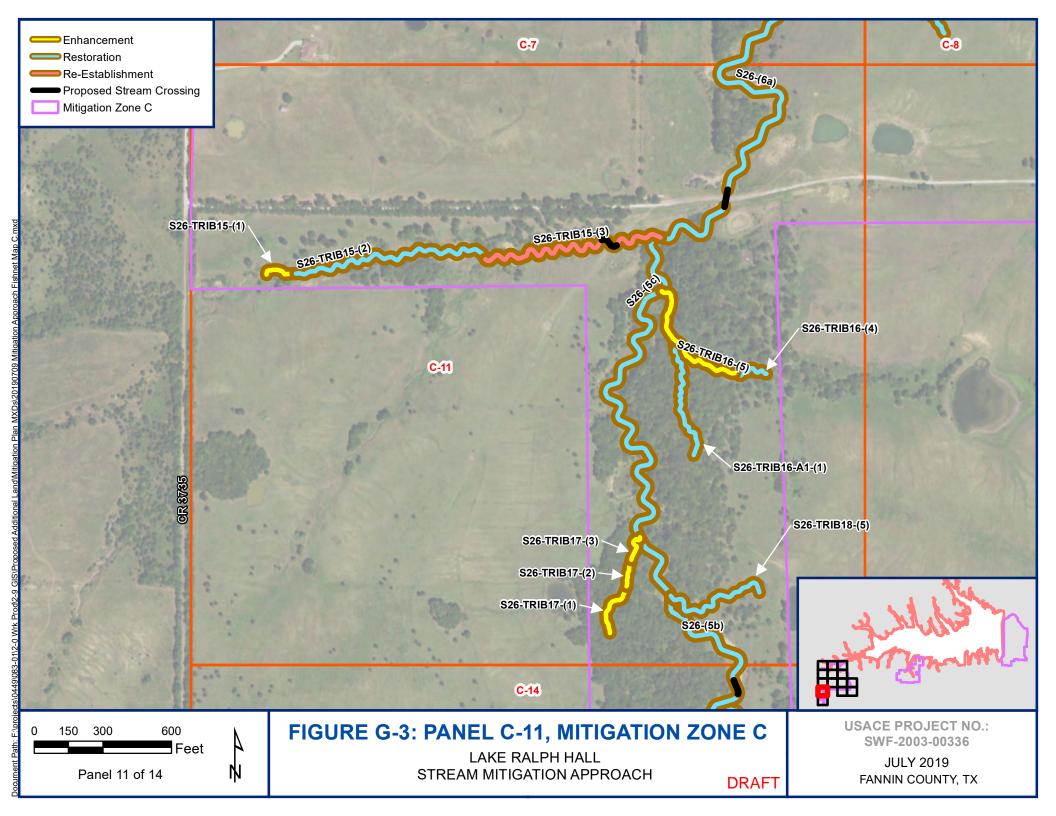


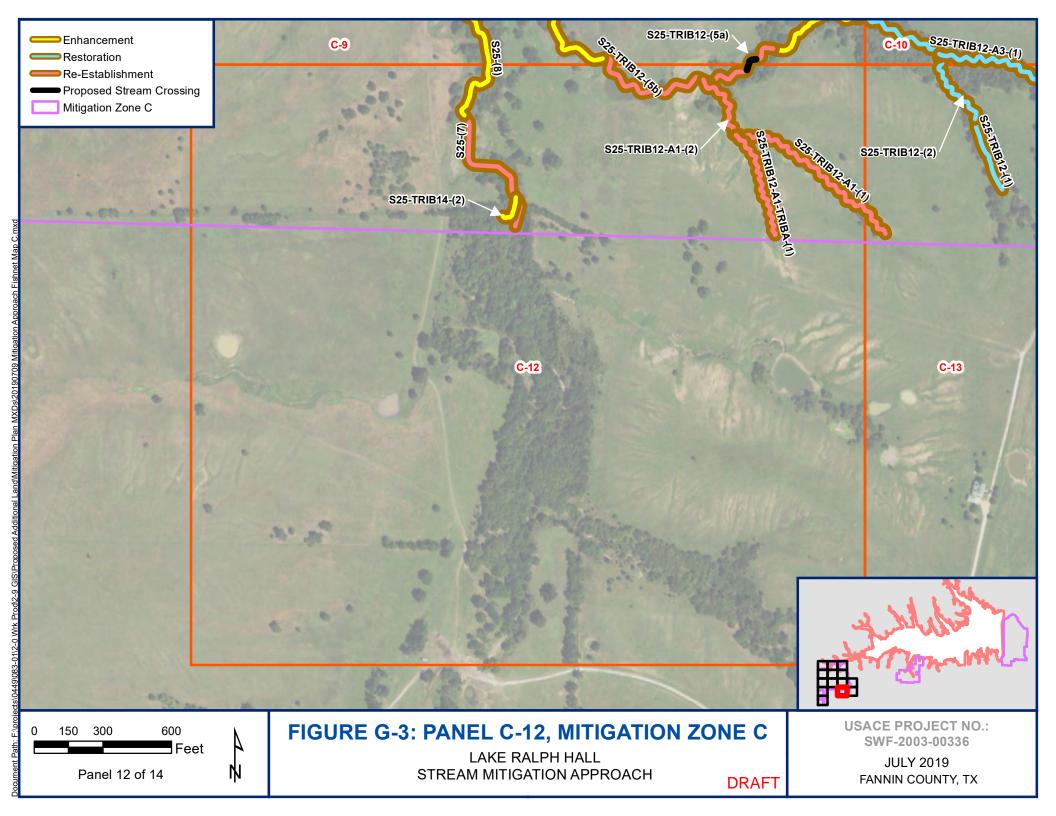


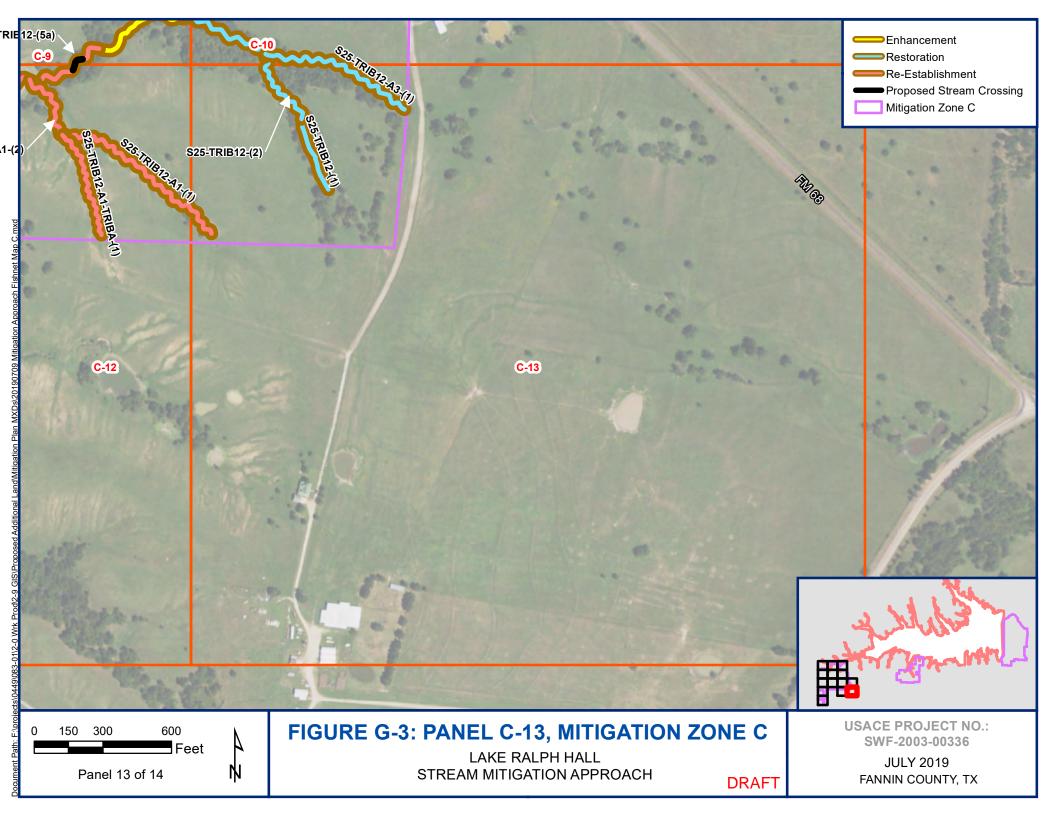


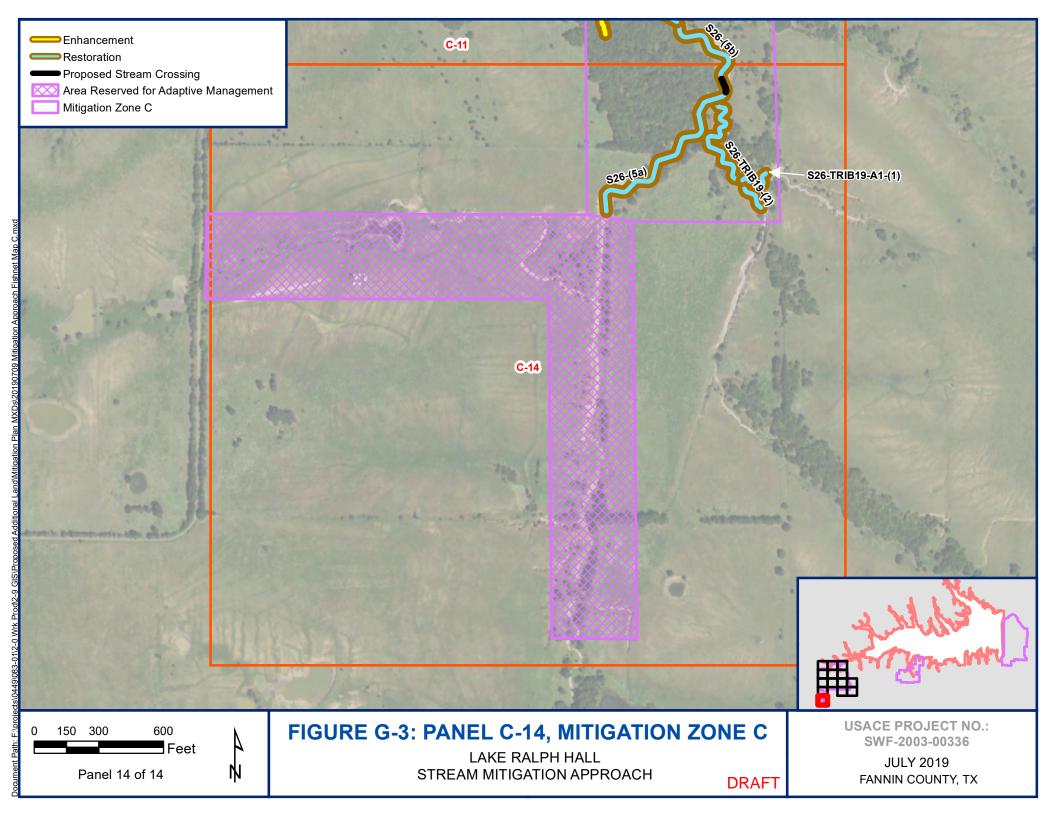












STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	7	7	7	- Protection within large contiguous	- GCS will reduce channel	
NSR-MC-RST	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	9	9	9	prevent uncontrolled access (cattle,	floodplain connectivity (through	
NSR DS of Dam	H3a. Channel Sinuosity	4	4	4	etc.) from outside conservation	increased overbank frequency)	
(Impact Area)	H3b. Bottom Substrate Composition	6	6	6	easement - Supplemental plantings of native	 LWD will increase channel roughness and improve bank stability 	
	H3c. Instream Bottom Topography OR Manning's n (f)	4	5	6	trees, shrubs, and herbaceous	- Created pools will retain water - Protection, plantings, and measures	
	H3d. Channel Incision	9	9	9	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	7	7	7	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	6	6	6	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	68	69	70	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
6,629	Hydrologic FCI = Subtotal / 100	0.68	0.69	0.70	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	9	9	9	(GCS) made from native material	from established buffer zones will	
Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition <i>(e, g)</i>	9	9	9	(rock or woody debris) where appropriate - Creation of pools in combination with	enhance in-stream habitat and biological productivity	
Stream Classification:	WQ2. Water Clarity	6	6	6	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (h)	7	7	7	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	4	6	9	around channel (minimum of 60' width		
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	9	9	9	on each side) - Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	51	59	67			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.64	0.74	0.84			
	HB1. Flow Regime	7	7	7			
Reference Figure(s):	HB2. Epifaunal Substrate and Available Cover	9	9	9	Notes:		
A-6, A-7, A-8	HB3. Stream Bottom Substrate	6	6	6	(a) Refer to SWAMPIM Assessment Protocol D Mitigation Plan) for scoring methodology.	ocumentation (included in Appendix C of	
	HB4. Pool Variability	9	9	9	(b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Functions: "HB" =	
	HB5. Sediment Deposition and Scouring	8	8	8	Habitat Functions.	()·; ·; ·; ·;	
	HB6. Channel Flow Status	6	6	6	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	9	9	9	(d) FCU = Functional Capacity Unit.	inter the second	
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r (f) Instream bottom topography was globally us		
	HB9. Bank Stability <i>(e)</i>	9	9	9	visual assessment of the stream reach.		
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo		
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately represents the channel condition within the Lake Ralph Hall project watershed. (h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not		
	HB12. Riparian Habitat Condition	2	5	7			
	Habitat Subtotal	75	84	91			
	Habitat FCI = Subtotal / 120	0.63	0.70	0.76	provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively.		
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.95	2.13	2.30			
	TOTAL FCU = SAR Length (6629) X Multiplication Factor (0.00315) X Total FCI	40.72	44.48	48.03	· · · · · · · · · · · · · · · · · · ·		

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel	
NSR-MC-RST (SPILLWAY)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	8	8	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
NSR DS of Dam	H3a. Channel Sinuosity	3	3	3	etc.) from outside conservation	increased overbank frequency)	
(Impact Area)	H3b. Bottom Substrate Composition	2	2	2	easement - Supplemental plantings of native	 LWD will increase channel roughness and improve bank stability 	
	H3c. Instream Bottom Topography OR Manning's	4	4	5	trees, shrubs, and herbaceous	- Created pools will retain water	
	n <i>(f)</i>				species	- Protection, plantings, and measures	
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	4	4	4	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	2	2	2	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	49	49	50	 Adjustment of channel gradient by 	- Woody debris, leaf litter, and	
1,600	Hydrologic FCI = Subtotal / 100	0.49	0.49	0.50	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	8	8	8	(GCS) made from native material	from established buffer zones will	
Mitigation Zone:	WQ1b. Channel Bottom Bank Stability OR	_		-	(rock or woody debris) where appropriate	enhance in-stream habitat and biological productivity	
Zone A	Channel Sediments or Substrate Composition (e,	8	8	8	- Creation of pools in combination with	biological productivity	
	g)		_		LWD and GCS and other locations		
Stream Classification:	WQ2. Water Clarity	5	5	5	where appropriate		
Ephemeral	WQ3. Nutrient Enrichment OR Presence of	5	5	5	- Creation of riparian buffer zones		
Malfalla fra Ersten (1)	Aquatic Vegetation (h)	3			around channel (minimum of 60' width		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	4	5	on each side)		
0.00125	WQ5. Land Use Pattern Beyond Immediate	9	9	9	- Creation of protected natural area		
	Riparian Zone (e)				adjacent to riparian buffer zone		
	WQ6a. Riparian Zone Width (from stream edge	5	7	9	- Monitoring and management		
	to field) <i>(e)</i> WQ6b. Riparian Zone Vegetation						
	Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	45	52	58			
Restoration	Water Quality / Biogeochemical Subtolar	45	52	50			
Restoration	Subtotal / 80	0.56	0.65	0.73			
	HB1. Flow Regime	2	2	2			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	3	3	3	Notes:		
A-6	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water G	Quality / Biogeochemical Functions: "HB" =	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	addity , Biogeochermour anotione, The	
	HB6. Channel Flow Status	2	2	2	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	 (e) Score shown is the average of the left and n (f) Instream bottom topography was globally us 		
	HB9. Bank Stability <i>(e)</i>	8	8	8	visual assessment of the stream reach.	ed in neu or manning site as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo		
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres	ents the channel condition within the Lake	
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed. (b) Nutrient Enrichment was used globally for si	coring because Aquatic Vegetation does not	
	Habitat Subtotal	49	58	65	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake		
	Habitat FCI = Subtotal / 120	0.41	0.48	0.54	Ralph Hall project watershed.		
	TOTAL FCI = Hydrologic FCI + Water Quality /	4.40	4.62	4 77	(i) The Multiplication Factor is determined by the		
	Biogeochemical FCI + Habitat FCI	1.46	1.62	1.77	factors for Perennial, Intermittent with Perennial are 0.0038, 0.00315, 0.0025, and 0.00125, resp		
					are 0.0000, 0.00010, 0.0020, and 0.00120, tesp	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	TOTAL FCU = SAR Length (1600) X	2.92	3.24	3.54			
	Multiplication Factor (0.00125) X Total FCI						

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT	
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel	
S1-TRIB1-(1a)	H2a. Channel Condition/ Alteration	8	8	8		downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability (e)	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S1-TRIB1-(1)	H3a. Channel Sinuosity	8	8	8	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	2	2	2	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's n (f)	4	4	5	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	H3d. Channel Incision	8	8	8	species	- Protection, plantings, and measures	
	H4a. Pools	4	4	4	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4b. Channel Flow Status	2	2	2	other native material for in-channel structures	improve bank stability, filter runoff, and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	52	53	55	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
3,622	Hydrologic FCI = Subtotal / 100	0.52	0.53	0.55	installing grade control structures	overhanging herbaceous vegetation	
5,022	WQ1a. Bank Stability (e)	6	0.33 7	8	(GCS) made from native material	from established buffer zones will	
Mitigation Zone:	WQ1b. Channel Bottom Bank Stability OR	0	1	0	(rock or woody debris) where	enhance in-stream habitat and	
Zone A	Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	WQ2. Water Clarity	1	1	1	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (h)	1	1	1	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width		
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	on each side) - Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	5	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	34	43	51			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.43	0.54	0.64			
	HB1. Flow Regime	2	2	2			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-8	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	4	4	4	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water G	Violity / Diagoophamical Eurotiona: "UP" -	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Biogeochemical Functions, HB =	
	HB6. Channel Flow Status	2	2	2	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	4	4	4	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	50	60	68	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not		
	Habitat FCI = Subtotal / 120	0.42	0.50	0.57	provide an accurate representation of ephemera	al stream channel condition within the Lake	
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.37	1.57	1.76	Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams		
	TOTAL FCU = SAR Length (3622) X Multiplication Factor (0.00125) X Total FCI	6.20	7.11	7.97	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	ecuvery.	

STREAM ASSESSMENT	SWAMPIM METRICS (a, b, c, d)	END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT			
REACH (SAR) INFORMATION	SWAMPINI METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT			
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel			
S1-TRIB1-(1b)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream			
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and			
Baseline SAR Name(s):	H2c. Channel Bank Stability (e)	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through			
S1-(1), S1-(2), S1-(3)	H3a. Channel Sinuosity	3	3	3	etc.) from outside conservation	increased overbank frequency)			
	H3b. Bottom Substrate Composition	2	2	2	easement - Supplemental plantings of native	 LWD will increase channel roughness and improve bank stability 			
	H3c. Instream Bottom Topography OR Manning's n <i>(f)</i>	4	4	5	trees, shrubs, and herbaceous	- Created pools will retain water			
	H3d. Channel Incision	8	8	8	species - Use of large woody debris (LWD) or	 Protection, plantings, and measures to prevent uncontrolled access will 			
	H4a. Pools	4	4	4	other native material for in-channel	improve bank stability, filter runoff,			
	H4b. Channel Flow Status	2	2	2	structures	and enhance water quality			
Proposed SAR Length (LF):	Hydrologic Subtotal	47	48	50	- Adjustment of channel gradient by	- Woody debris, leaf litter, and			
1,180	Hydrologic FCI = Subtotal / 100	0.47	0.48	0.50	installing grade control structures	overhanging herbaceous vegetation			
1,100	WQ1a. Bank Stability (e)	6	7	8	(GCS) made from native material	from established buffer zones will			
Mitigation Zone:	WQ1b. Channel Bottom Bank Stability OR	-			(rock or woody debris) where	enhance in-stream habitat and			
Zone A	Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity			
Stream Classification:	WQ2. Water Clarity	1	1	1	LWD and GCS and other locations				
Ephemeral	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	1	1	1	where appropriate - Creation of riparian buffer zones				
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width on each side)				
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	9	9	9	- Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management				
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9					
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9					
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	34	43	51					
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.43	0.54	0.64					
	HB1. Flow Regime	2	2	2					
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:				
A-8	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of			
	HB4. Pool Variability	4	4	4	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Piagaaabamiaal Eurotiana: "HP" -			
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Biogeochemical Functions, HB -			
	HB6. Channel Flow Status	2	2	2	(c) FCI = Functional Condition Index.				
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.				
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r	ight bank scores.			
	HB9. Bank Stability (e)	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a			
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	obally instead of Channel Sediment/Substrate			
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres				
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.				
	Habitat Subtotal	49	59	67	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake				
	Habitat FCI = Subtotal / 120	0.41	0.49	0.56	provide an accurate representation of ephemera Ralph Hall project watershed.	ai stream cnannei condition within the Lake			
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.31	1.51	1.70	(i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams				
	TOTAL FCU = SAR Length (1180) X Multiplication Factor (0.00125) X Total FCI	1.93	2.23	2.51	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	Jocuvoly.			

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel	
S2-(2a)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
N/A	H3a. Channel Sinuosity	6	6	6	etc.) from outside conservation easement	increased overbank frequency) - LWD will increase channel	
	H3b. Bottom Substrate Composition	1	1	1	- Supplemental plantings of native	roughness and improve bank stability	
	H3c. Instream Bottom Topography OR Manning's n (f)	4	4	5	trees, shrubs, and herbaceous	 Created pools will retain water Protection, plantings, and measures 	
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	4	4	4	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	2	2	2	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	49	50	52	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
1,425	Hydrologic FCI = Subtotal / 100	0.49	0.50	0.52	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	6	7	8	(GCS) made from native material	from established buffer zones will	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	5	5	5	(rock or woody debris) where appropriate - Creation of pools in combination with	enhance in-stream habitat and biological productivity	
Stream Classification:	WQ2. Water Clarity	1	1	1	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	1	1	1	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width on each side)		
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	9	9	9	- Creation of protected natural area adjacent to riparian buffer zone		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9	- Monitoring and management		
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	41	49			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.51	0.61			
	HB1. Flow Regime	2	2	2			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-10	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Functions: "HB" =	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.		
	HB6. Channel Flow Status	2	2	2	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r (f) Instream bottom topography was globally us		
	HB9. Bank Stability <i>(e)</i>	6	7	8	visual assessment of the stream reach.		
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bbally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres	ents the channel condition within the Lake	
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed. (h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake		
	Habitat Subtotal	48	58	66			
	Habitat FCI = Subtotal / 120	0.40	0.48	0.55	Ralph Hall project watershed.		
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.29	1.49	1.68	(i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Stream. are 0.0038, 0.00315, 0.0025, and 0.00125, respectively.		
	TOTAL FCU = SAR Length (1425) X Multiplication Factor (0.00125) X Total FCI	2.30	2.65	2.99	,,, _,, _		

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel	
S2-(2b)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-(2), S2-(3)	H3a. Channel Sinuosity	8	8	8	etc.) from outside conservation easement	increased overbank frequency)	
	H3b. Bottom Substrate Composition	1	1	1	- Supplemental plantings of native	 LWD will increase channel roughness and improve bank stability 	
	H3c. Instream Bottom Topography OR Manning's n (f)	4	4	5	trees, shrubs, and herbaceous	- Created pools will retain water	
	H3d. Channel Incision	8	8	8	species - Use of large woody debris (LWD) or	 Protection, plantings, and measures to prevent uncontrolled access will 	
	H4a. Pools	4	4	4	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	2	2	2	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	51	52	54	- Adjustment of channel gradient by installing grade control structures	- Woody debris, leaf litter, and	
1,785	Hydrologic FCI = Subtotal / 100	0.51	0.52	0.54		overhanging herbaceous vegetation	
,	WQ1a. Bank Stability (e)	6	7	8	(GCS) made from native material	from established buffer zones will	
Mitigation Zone:	WQ1b. Channel Bottom Bank Stability OR				(rock or woody debris) where	enhance in-stream habitat and	
Zone A	Channel Sediments or Substrate Composition (e, g)	5	5	5	appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	WQ2. Water Clarity	1	1	1	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	1	1	1	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width		
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	on each side) - Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	41	49			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.51	0.61			
	HB1. Flow Regime	2	2	2			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-7	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Violity / Diagoophamical Eurotiona: "HB" -	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Biogeochemical Functions, HB -	
	HB6. Channel Flow Status	2	2	2	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	4	4	4	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately represents the channel condition within the Lake		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	49	59	67	 (h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00375, 0.0025, and 0.00125, respectively. 		
	Habitat FCI = Subtotal / 120	0.41	0.49	0.56			
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.32	1.52	1.71			
	TOTAL FCU = SAR Length (1785) X Multiplication Factor (0.00125) X Total FCI	2.95	3.39	3.82	are 0.0030, 0.00313, 0.0023, and 0.00123, tesp	ocurciy.	

STREAM ASSESSMENT	SWAMPIM METRICS (a, b, c, d)	END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT	
REACH (SAR) INFORMATION		CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	7	7	7	- Protection within large contiguous	- GCS will reduce channel	
S2-(3a)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	9	9	9	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-(3), S2-TRIB3-(12),	H3a. Channel Sinuosity	8	8	8	etc.) from outside conservation easement	increased overbank frequency) - LWD will increase channel	
S2-TRIB3-A2-(1)	H3b. Bottom Substrate Composition	4	4	4	- Supplemental plantings of native	roughness and improve bank stability	
	H3c. Instream Bottom Topography OR Manning's n (f)	5	6	7	trees, shrubs, and herbaceous	- Created pools will retain water - Protection, plantings, and measures	
	H3d. Channel Incision	9	9	9	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	5	5	5	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	6	6	6	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	69	70	71	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
7,836	Hydrologic FCI = Subtotal / 100	0.69	0.70	0.71	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	9	9	9	(GCS) made from native material	from established buffer zones will	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	9	9	9	(rock or woody debris) where appropriate - Creation of pools in combination with	enhance in-stream habitat and biological productivity	
Stream Classification:	WQ2. Water Clarity	6	6	6	LWD and GCS and other locations		
Intermittent / Perennial Pools	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (h)	7	7	7	where appropriate - Creation of riparian buffer zones around abannel (minimum of 60) width		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	4	6	9	around channel (minimum of 60' width on each side)		
0.00315	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	9	9	9	- Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	51	59	67			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.64	0.74	0.84			
	HB1. Flow Regime	7	7	7			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	9	9	9	Notes:		
A-7	HB3. Stream Bottom Substrate	6	6	6	(a) Refer to SWAMPIM Assessment Protocol D Mitigation Plan) for scoring methodology.	ocumentation (included in Appendix C of	
	HB4. Pool Variability	8	8	8	(b) "H" = Hydrologic Functions; "WQ" = Water (Duality / Biogeochemical Functions: "HB" =	
	HB5. Sediment Deposition and Scouring	9	9	9	Habitat Functions.	() · g	
	HB6. Channel Flow Status	6	6	6	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	9	9	9	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	5	5	5	(e) Score shown is the average of the left and r (f) Instream bottom topography was globally us	gnt bank scores. ed in lieu of Manning's N as it allows for a	
	HB9. Bank Stability <i>(e)</i>	9	9	9	visual assessment of the stream reach.		
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo		
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres	ents the channel condition within the Lake	
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.	coring because Aquatic Versitation door act	
	Habitat Subtotal	77	86	93	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake		
	Habitat FCI = Subtotal / 120	0.64	0.72	0.78	Ralph Hall project watershed.		
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.97	2.16	2.33	(i) The Multiplication Factor is determined by the factors for Perennial, Intermittent with Perennia are 0.0038, 0.00315, 0.0025, and 0.00125, resp	Pools, Intermittent, and Ephemeral Streams	
	TOTAL FCU = SAR Length (7836) X Multiplication Factor (0.00315) X Total FCI	48.63	53.32	57.51	· · · · · · · · · · · · · · · · · · ·	····· · ,	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	7	7	7	- Protection within large contiguous	- GCS will reduce channel	
S2-(3b)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	9	9	9	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB1-(4)	H3a. Channel Sinuosity	8	8	8	etc.) from outside conservation easement	increased overbank frequency) - LWD will increase channel	
	H3b. Bottom Substrate Composition	4	4	4	- Supplemental plantings of native	roughness and improve bank stability	
	H3c. Instream Bottom Topography OR Manning's n (f)	5	6	7	trees, shrubs, and herbaceous	- Created pools will retain water - Protection, plantings, and measures	
	H3d. Channel Incision	9	9	9	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	5	5	5	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	6	6	6	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	69	70	71	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
1,296	Hydrologic FCI = Subtotal / 100	0.69	0.70	0.71	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	9	9	9	(GCS) made from native material	from established buffer zones will	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e,	9	9	9	(rock or woody debris) where appropriate - Creation of pools in combination with	enhance in-stream habitat and biological productivity	
Stream Classification:	<i>g)</i> WQ2. Water Clarity	6	6	6	LWD and GCS and other locations		
Intermittent / Perennial Pools	WQ3. Nutrient Enrichment OR Presence of			0	where appropriate		
	Aquatic Vegetation (h)	7	7	7	- Creation of riparian buffer zones around channel (minimum of 60' width		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	4	6	9	on each side)		
0.00315	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	- Creation of protected natural area adjacent to riparian buffer zone		
	WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	5	7	9	- Monitoring and management		
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	51	59	67			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.64	0.74	0.84			
	HB1. Flow Regime	7	7	7			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	9	9	9	Notes:		
A-8	HB3. Stream Bottom Substrate	6	6	6	(a) Refer to SWAMPIM Assessment Protocol D Mitigation Plan) for scoring methodology.	ocumentation (included in Appendix C of	
	HB4. Pool Variability	8	8	8	(b) "H" = Hydrologic Functions; "WQ" = Water G	Quality / Biogeochemical Functions: "HB" =	
	HB5. Sediment Deposition and Scouring	9	9	9	Habitat Functions.		
	HB6. Channel Flow Status	6	6	6	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	9	9	9	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	5	5	5	(e) Score shown is the average of the left and n (f) Instream bottom topography was globally us		
	HB9. Bank Stability <i>(e)</i>	9	9	9	visual assessment of the stream reach.	ed in neu or manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres	ents the channel condition within the Lake	
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	77	86	93	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake		
	Habitat FCI = Subtotal / 120	0.64	0.72	0.78	Ralph Hall project watershed.		
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.97	2.16	2.33	(i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Stream are 0.0038, 0.00315, 0.0025, and 0.00125, respectively.		
	TOTAL FCU = SAR Length (1296) X Multiplication Factor (0.00315) X Total FCI	8.04	8.82	9.51	····, · · · · · · · · · · · · · · · · ·		

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	7	7	7	- Protection within large contiguous	- GCS will reduce channel	
S2-(3c)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	9	9	9	prevent uncontrolled access (cattle,	floodplain connectivity (through	
N/A	H3a. Channel Sinuosity	5	5	5	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	4	4	4	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's n (f)	5	6	7	- Supplemental plantings of native trees, shrubs, and herbaceous	roughness and improve bank stability - Created pools will retain water	
	H3d. Channel Incision	9	9	9	species - Use of large woody debris (LWD) or	 Protection, plantings, and measures to prevent uncontrolled access will 	
	H4a. Pools	5	5	5	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	6	6	6	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	66	67	68	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
1,821	Hydrologic FCI = Subtotal / 100	0.66	0.67	0.68	installing grade control structures	overhanging herbaceous vegetation	
.,	WQ1a. Bank Stability (e)	9	9	9	(GCS) made from native material	from established buffer zones will	
Mitigation Zone:	WQ1b. Channel Bottom Bank Stability OR	-			(rock or woody debris) where	enhance in-stream habitat and	
Zone A	Channel Sediments or Substrate Composition (e, g)	9	9	9	appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	WQ2. Water Clarity	6	6	6	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	7	7	7	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	4	6	9	around channel (minimum of 60' width		
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	on each side) - Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	51	59	67			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.64	0.74	0.84			
	HB1. Flow Regime	7	7	7			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	9	9	9	Notes:		
A-8	HB3. Stream Bottom Substrate	6	6	6	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	8	8	8	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality (Biassachamical Eurotiana: "HP" -	
	HB5. Sediment Deposition and Scouring	9	9	9	Habitat Functions.	quality / Biogeochemical Functions, HB -	
	HB6. Channel Flow Status	6	6	6	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	9	9	9	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	9	9	9	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	obally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately represents the channel condition within the Lake		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	75	84	91	(<i>h</i>) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake		
	Habitat FCI = Subtotal / 120	0.63	0.70	0.76	provide an accurate representation of ephemera Ralph Hall project watershed.	ai stream channei condition within the Lake	
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.93	2.11	2.28	 (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively. 		
	TOTAL FCU = SAR Length (1821) X Multiplication Factor (0.00315) X Total FCI	11.07	12.10	13.08	are 0.0000, 0.00010, 0.0020, and 0.00120, tesp	occurrory.	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	7	7	7	- Protection within large contiguous	- GCS will reduce channel	
S2-(3d)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	9	9	9	prevent uncontrolled access (cattle,	floodplain connectivity (through	
N/A	H3a. Channel Sinuosity	4	4	4	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	4	4	4	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's n (f)	5	6	7	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	H3d. Channel Incision	9	9	9	species	- Protection, plantings, and measures	
	H4a. Pools	5	9 5	9 5	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4b. Channel Flow Status	6	6	6	other native material for in-channel	improve bank stability, filter runoff,	
Proposed SAR Length (LF):	Hydrologic Subtotal	65	66	67	structures	and enhance water quality	
· · · · · · · · · · · · · · · · · · ·	, ,			-	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
312	Hydrologic FCI = Subtotal / 100 WQ1a. Bank Stability (e)	0.65 9	0.66 9	0.67	installing grade control structures (GCS) made from native material	overhanging herbaceous vegetation from established buffer zones will	
Mitigation Zanas		9	9	9	(rock or woody debris) where	enhance in-stream habitat and	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	9	9	9	appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	WQ2. Water Clarity	6	6	6	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (h)	7	7	7	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	4	6	9	around channel (minimum of 60' width		
0.00315	WQ5. Land Use Pattern Beyond Immediate	9	9	9	on each side) - Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	Riparian Zone <i>(e)</i> WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	5	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	51	59	67			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.64	0.74	0.84			
	HB1. Flow Regime	7	7	7			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	9	9	9	Notes:		
A-8	HB3. Stream Bottom Substrate	6	6	6	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	8	8	8	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality (Diagonabamical Eurotiona: "HD" -	
	HB5. Sediment Deposition and Scouring	9	9	9	Habitat Functions.	Quality / Biogeochemical Functions, HB =	
	HB6. Channel Flow Status	6	6	6	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	9	9	9	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	9	9	9	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	obally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	75	84	91	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not		
	Habitat FCI = Subtotal / 120	0.63	0.70	0.76	provide an accurate representation of ephemera Ralph Hall project watershed.	al stream channel condition within the Lake	
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.92	2.10	2.27	(i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams		
	TOTAL FCU = SAR Length (312) X Multiplication Factor (0.00315) X Total FCI	1.89	2.06	2.23	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	Jecuvery.	

S2-TRIB1-(1a) H Baseline SAR Name(s): H	11. Flow Regime and Groundwater Interaction 12a. Channel Condition/ Alteration 12b. Channel Capacity to Flow Frequency	CONSTRUCTION		MATURITY	PERFORMED	RATIONALE FOR LIFT				
S2-TRIB1-(1a) H Baseline SAR Name(s): H	12a. Channel Condition/ Alteration 12b. Channel Capacity to Flow Frequency	1	4							
H Baseline SAR Name(s):	12b. Channel Capacity to Flow Frequency			1	- Protection within large contiguous	- GCS will reduce channel				
Baseline SAR Name(s):		8	8	8	mititgation area	downcutting and improve stream				
		8	8	8	- Implementation of measures to	stability, sediment transport, and				
	H2c. Channel Bank Stability (e)	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through				
N/A H	13a. Channel Sinuosity	4	4	4	etc.) from outside conservation easement	increased overbank frequency)				
н	13b. Bottom Substrate Composition	2	2	2	- Supplemental plantings of native	 LWD will increase channel roughness and improve bank stability 				
	H3c. Instream Bottom Topography OR Manning's	3	3	4	trees, shrubs, and herbaceous	- Created pools will retain water				
	13d. Channel Incision	8	8	8	species - Use of large woody debris (LWD) or	 Protection, plantings, and measures to prevent uncontrolled access will 				
	14a. Pools	0	0	0	other native material for in-channel	improve bank stability, filter runoff,				
	Hab. Channel Flow Status	0	0	0	structures	and enhance water quality				
Proposed SAR Length (LF):	Hydrologic Subtotal	40	41	43	- Adjustment of channel gradient by	- Woody debris, leaf litter, and				
878	Hydrologic FCI = Subtotal / 100	0.40	0.41	0.43	installing grade control structures	overhanging herbaceous vegetation				
	VQ1a. Bank Stability (e)	6	7	8	(GCS) made from native material	from established buffer zones will				
	VQ1b. Channel Bottom Bank Stability OR	Ŭ		0	(rock or woody debris) where	enhance in-stream habitat and				
5	Channel Sediments or Substrate Composition (e,	7	7	7	appropriate - Creation of pools in combination with	biological productivity				
5	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations					
Ephemeral W	VQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (h)	0	0	0	where appropriate - Creation of riparian buffer zones					
	VQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width					
0.00125	VQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	9	9	9	on each side) - Creation of protected natural area					
W	VQ6a. Riparian Zone Width (from stream edge o field) (e)	5	7	9	adjacent to riparian buffer zone - Monitoring and management					
	VQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9						
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	41	49						
Re-Establishment	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.51	0.61						
H H	B1. Flow Regime	1	1	1						
Reference Figure: H	B2. Epifaunal Substrate and Available Cover	4	4	4	Notes:					
A-14 H	B3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of				
н	HB4. Pool Variability	4	4	4	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water G	Violity / Biogeochemical Eurotiona, "HB" -				
н	IB5. Sediment Deposition and Scouring	5	5	5	Habitat Functions.	quality / Biogeochemical Functions, HB -				
H	B6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.					
н	B7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.					
н	IB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r					
H	B9. Bank Stability (e)	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a				
н	B10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate				
	IB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres					
	B12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.					
	Habitat Subtotal	44	54	62	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams					
	Habitat FCI = Subtotal / 120	0.37	0.45	0.52						
Г	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.17	1.37	1.56						
	TOTAL FCU = SAR Length (878) X Multiplication Factor (0.00125) X Total FCI	1.28	1.50	1.71	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	ecuvery.				

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB1-(1b)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB1-(1)	H3a. Channel Sinuosity	5	5	5	etc.) from outside conservation easement	increased overbank frequency) - LWD will increase channel	
	H3b. Bottom Substrate Composition	1	1	1	- Supplemental plantings of native	roughness and improve bank stability	
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	trees, shrubs, and herbaceous	- Created pools will retain water - Protection, plantings, and measures	
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	0	0	0	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	0	0	0	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	39	40	42	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
2,547	Hydrologic FCI = Subtotal / 100	0.39	0.40	0.42	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	6	7	8	(GCS) made from native material	from established buffer zones will	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	(rock or woody debris) where appropriate - Creation of pools in combination with	enhance in-stream habitat and biological productivity	
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	0	0	0	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width on each side)		
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	9	9	9	- Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	41	49			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.51	0.61			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-11, A-14	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D Mitigation Plan) for scoring methodology.	ocumentation (included in Appendix C of	
	HB4. Pool Variability	4	4	4	(b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Functions: "HB" =	
	HB5. Sediment Deposition and Scouring	5	5	5	Habitat Functions.		
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r (f) Instream bottom topography was globally us		
	HB9. Bank Stability <i>(e)</i>	6	7	8	visual assessment of the stream reach.	ed in neu of manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres	ents the channel condition within the Lake	
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.	ooring boooling Agustic Manatation data at	
	Habitat Subtotal	44	54	62	 (h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively. 		
	Habitat FCI = Subtotal / 120	0.37	0.45	0.52			
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.16	1.36	1.55			
	TOTAL FCU = SAR Length (2547) X Multiplication Factor (0.00125) X Total FCI	3.69	4.33	4.93		····· · · · ·	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB1-(2)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
	H3a. Channel Sinuosity	8	8	8	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's n (f)	4	4	5	- Supplemental plantings of native trees, shrubs, and herbaceous	roughness and improve bank stability - Created pools will retain water	
	H3d. Channel Incision	8	8	8	species	 Protection, plantings, and measures to prevent uncontrolled access will 	
	H4a. Pools	0	0	0	 Use of large woody debris (LWD) or other native material for in-channel 	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	0	0	0	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	44	45	47	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
5,589	Hydrologic FCI = Subtotal / 100	0.44	0.45	0.47	installing grade control structures	overhanging herbaceous vegetation	
0,000	WQ1a. Bank Stability (e)	6	7	8	(GCS) made from native material	from established buffer zones will	
Mitigation Zone:	WQ1b. Channel Bottom Bank Stability OR	•		0	(rock or woody debris) where	enhance in-stream habitat and	
Zone A	Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	0	0	0	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width		
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	on each side) - Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	41	49			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.51	0.61	-		
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-8, A-11	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Piagoochomical Eurotions: "UP" -	
	HB5. Sediment Deposition and Scouring	6	6	6	Habitat Functions.	quality / Biogeochemical Functions, HB -	
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	4	4	4	(e) Score shown is the average of the left and r		
	HB9. Bank Stability (e)	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	45	55	63	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams		
	Habitat FCI = Subtotal / 120	0.38	0.46	0.53			
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.22	1.42	1.61			
	TOTAL FCU = SAR Length (5589) X Multiplication Factor (0.00125) X Total FCI	8.52	9.92	11.25	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	iocuvoiy.	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT	
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB1-A1-(1)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
2-TRIB1-A1-(1)	H3a. Channel Sinuosity	1	1	1	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	n (f)			_	species	- Protection, plantings, and measures	
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	0	0	0	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	0	0	0	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	35	36	38	- Adjustment of channel gradient by	 Woody debris, leaf litter, and 	
471	Hydrologic FCI = Subtotal / 100	0.35	0.36	0.38	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	6	7	8	(GCS) made from native material	from established buffer zones will	
	WQ1b. Channel Bottom Bank Stability OR				(rock or woody debris) where	enhance in-stream habitat and	
Zone A	Channel Sediments or Substrate Composition (e,	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	<i>g)</i> WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of	0	0	0	where appropriate		
Ephemeral	Aquatic Vegetation (h)	0	0	0	- Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	2	3	4	around channel (minimum of 60' width		
	WQ5. Land Use Pattern Beyond Immediate		-	-	on each side) - Creation of protected natural area		
	Riparian Zone (e)	9	9	9	adjacent to riparian buffer zone		
	WQ6a. Riparian Zone Width (from stream edge	Ĺ	7	9	- Monitoring and management		
	to field) (e)	5	7	9	с с		
	WQ6b. Riparian Zone Vegetation	0	â	9			
	Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	31	39	46			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.39	0.49	0.58			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-13	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality (Biassachamical Eurotiana: "HP" -	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	Quality / Biogeochemical Functions, HB =	
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	1	1	1	(e) Score shown is the average of the left and r		
	HB9. Bank Stability (e)	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	obally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	43	53	61	 (h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams 		
	Habitat FCI = Subtotal / 120	0.36	0.44	0.51			
	TOTAL FCI = Hydrologic FCI + Water Quality /	1.10	1.29	1.47			
	Biogeochemical FCI + Habitat FCI	1.10	1.29	1.47	are 0.0038, 0.00315, 0.0025, and 0.00125, resp		
	TOTAL FCU = SAR Length (471) X	0.65	0.76	0.87			
	Multiplication Factor (0.00125) X Total FCI	0.00	0.76	0.07			

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT			
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT			
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel			
S2-TRIB1-A1-(2)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream			
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and			
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through			
S2-TRIB1-A1-(2)	H3a. Channel Sinuosity	1	1	1	etc.) from outside conservation	increased overbank frequency)			
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel			
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water			
	H3d. Channel Incision	8	8	8	species	 Protection, plantings, and measures 			
	H4a. Pools	0	0	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will			
	H4b. Channel Flow Status	0	0	0	other native material for in-channel	improve bank stability, filter runoff,			
		-	-	-	structures	and enhance water quality			
Proposed SAR Length (LF):	Hydrologic Subtotal	35	36	38	- Adjustment of channel gradient by	- Woody debris, leaf litter, and			
300	Hydrologic FCI = Subtotal / 100	0.35	0.36	0.38	installing grade control structures (GCS) made from native material	overhanging herbaceous vegetation from established buffer zones will			
Mitingtian Zanas	WQ1a. Bank Stability (e)	6	7	8	(rock or woody debris) where	enhance in-stream habitat and			
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity			
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations				
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (h)	0	0	0	where appropriate - Creation of riparian buffer zones				
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width				
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	on each side) - Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management				
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9					
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9					
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	41	49					
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.51	0.61	-				
	HB1. Flow Regime	1	1	1					
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:				
A-13	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of			
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Piagoochomical Eurotions: "UP" -			
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Biogeochemical Functions, HB -			
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.				
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.				
	HB8. Channel Sinuosity	1	1	1	(e) Score shown is the average of the left and r				
	HB9. Bank Stability (e)	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a			
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	obally instead of Channel Sediment/Substrate			
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres				
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.				
	Habitat Subtotal	43	53	61	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake				
	Habitat FCI = Subtotal / 120	0.36	0.44	0.51		ai stream channel condition within the Lake			
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.11	1.31	1.50	Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively.				
	TOTAL FCU = SAR Length (300) X Multiplication Factor (0.00125) X Total FCI	0.42	0.49	0.56	are 0.0000, 0.00010, 0.0020, and 0.00120, lesp	occurrory.			

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB1-A1-(3)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB1-A1-(3)	H3a. Channel Sinuosity	4	4	4	etc.) from outside conservation easement	increased overbank frequency) - LWD will increase channel	
	H3b. Bottom Substrate Composition	1	1	1	- Supplemental plantings of native	roughness and improve bank stability	
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	trees, shrubs, and herbaceous	- Created pools will retain water - Protection, plantings, and measures	
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	0	0	0	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	0	0	0	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	38	39	41	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
422	Hydrologic FCI = Subtotal / 100	0.38	0.39	0.41	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	6	7	8	(GCS) made from native material	from established buffer zones will	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	(rock or woody debris) where appropriate - Creation of pools in combination with	enhance in-stream habitat and biological productivity	
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
Ephemeral	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (h)	0	0	0	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width on each side)		
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	9	9	9	Oreation of protected natural area adjacent to riparian buffer zone Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	41	49			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.51	0.61			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-13	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D Mitigation Plan) for scoring methodology.	ocumentation (included in Appendix C of	
	HB4. Pool Variability	4	4	4	(b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Functions: "HB" =	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.		
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.	isht hank agarag	
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r (f) Instream bottom topography was globally us	ight bank scores. ed in lieu of Manning's N as it allows for a	
	HB9. Bank Stability <i>(e)</i>	6	7	8	visual assessment of the stream reach.		
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo		
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres	ents the channel condition within the Lake	
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed. (h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not		
	Habitat Subtotal	46	56	64	provide an accurate representation of ephemera		
	Habitat FCI = Subtotal / 120	0.38	0.47	0.53	Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively.		
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.16	1.37	1.55			
	TOTAL FCU = SAR Length (422) X Multiplication Factor (0.00125) X Total FCI	0.61	0.72	0.82	· · · · · · · · · · · · · · · · · · ·		

STREAM ASSESSMENT	SWAMPIM METRICS (a, b, c, d)	END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT	
REACH (SAR) INFORMATION	SWAMPIN METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB1-A1-(4)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	8	8	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB1-A1-(4),	H3a. Channel Sinuosity	5	5	5	etc.) from outside conservation easement	increased overbank frequency) - LWD will increase channel	
S2-TRIB1-(2)	H3b. Bottom Substrate Composition	1	1	1	- Supplemental plantings of native	roughness and improve bank stability	
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	trees, shrubs, and herbaceous	- Created pools will retain water - Protection, plantings, and measures	
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	0	0	0	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	0	0	0	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	41	41	42	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
1,251	Hydrologic FCI = Subtotal / 100	0.41	0.41	0.42	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	8	8	8	(GCS) made from native material	from established buffer zones will	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e,	7	7	7	(rock or woody debris) where appropriate - Creation of pools in combination with	enhance in-stream habitat and biological productivity	
Stream Classification:	<i>g)</i> WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
Ephemeral	WQ3. Nutrient Enrichment OR Presence of	0	0	0	where appropriate		
•	Aquatic Vegetation (h)	0	0	0	- Creation of riparian buffer zones around channel (minimum of 60' width		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	on each side)		
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	- Creation of protected natural area adjacent to riparian buffer zone		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9	- Monitoring and management		
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	34	42	49			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.43	0.53	0.61			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-11	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	4	4	4	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water G	Quality / Biogeochemical Functions: "HB" =	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	adanty i Biogeoconomica i anotione, inB	
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	 (e) Score shown is the average of the left and n (f) Instream bottom topography was globally us 		
	HB9. Bank Stability <i>(e)</i>	8	8	8	visual assessment of the stream reach.	ed in neu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres	ents the channel condition within the Lake	
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	48	57	64	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake		
	Habitat FCI = Subtotal / 120	0.40	0.48	0.53	Ralph Hall project watershed.	a sueam channer conullon within the Lake	
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.24	1.42	1.56	(i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Stream. are 0.0038, 0.00315, 0.0025, and 0.00125, respectively.		
	TOTAL FCU = SAR Length (1251) X Multiplication Factor (0.00125) X Total FCI	1.94	2.22	2.44		···· · · ·	

STREAM ASSESSMENT	SWAMPIM METRICS (a, b, c, d)	END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT	
REACH (SAR) INFORMATION		CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB2-(1)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB2-(1)	H3a. Channel Sinuosity	3	3	3	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	H3d. Channel Incision	8	8	8	species	- Protection, plantings, and measures	
	H4a. Pools	4	4	0 4	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4b. Channel Flow Status	2	2	2	other native material for in-channel	improve bank stability, filter runoff,	
	Hydrologic Subtotal			47	structures	and enhance water quality	
Proposed SAR Length (LF):	, ,	44	45		- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
234	Hydrologic FCI = Subtotal / 100 WQ1a. Bank Stability (e)	0.44 6	0.45	0.47	installing grade control structures (GCS) made from native material	overhanging herbaceous vegetation from established buffer zones will	
Million di un 7 anno		6	7	8	(rock or woody debris) where	enhance in-stream habitat and	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	WQ2. Water Clarity	1	1	1	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (h)	1	1	1	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	2	3	4	around channel (minimum of 60' width		
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	on each side) - Creation of protected natural area adjacent to riparian buffer zone		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9	- Monitoring and management		
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	33	41	48			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.41	0.51	0.60			
	HB1. Flow Regime	2	2	2			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-16	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Piagaaabamical Eurotiana: "UP" -	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Diogeochemical Functions, ThD =	
	HB6. Channel Flow Status	2	2	2	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	48	58	66	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams		
	Habitat FCI = Subtotal / 120	0.40	0.48	0.55			
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.25	1.44	1.62			
	TOTAL FCU = SAR Length (234) X Multiplication Factor (0.00125) X Total FCI	0.37	0.42	0.47	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	Jourdy.	

STREAM ASSESSMENT	SWAMPIM METRICS (a, b, c, d)	END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT	
REACH (SAR) INFORMATION		CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB2-(2)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB2-(2)	H3a. Channel Sinuosity	3	3	3	etc.) from outside conservation easement	increased overbank frequency)	
	H3b. Bottom Substrate Composition	2	2	2	- Supplemental plantings of native	 LWD will increase channel roughness and improve bank stability 	
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	trees, shrubs, and herbaceous	- Created pools will retain water	
	H3d. Channel Incision	8	8	8	species - Use of large woody debris (LWD) or	 Protection, plantings, and measures to prevent uncontrolled access will 	
	H4a. Pools	4	4	4	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	2	2	2	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	45	46	48	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
385	Hydrologic FCI = Subtotal / 100	0.45	0.46	0.48	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability (e)	6	7	8	(GCS) made from native material	from established buffer zones will	
Mitigation Zone:	WQ1b. Channel Bottom Bank Stability OR	-		0	(rock or woody debris) where	enhance in-stream habitat and	
Zone A	Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	WQ2. Water Clarity	1	1	1	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	1	1	1	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	2	3	4	around channel (minimum of 60' width		
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	on each side) - Creation of protected natural area		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9	adjacent to riparian buffer zone - Monitoring and management		
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	33	41	48			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.41	0.51	0.60			
	HB1. Flow Regime	2	2	2			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-16	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Viality / Biagagabamical Eurotiana: "HP" -	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Biogeochemical Functions, HB =	
	HB6. Channel Flow Status	2	2	2	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	48	58	66	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams		
	Habitat FCI = Subtotal / 120	0.40	0.48	0.55			
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.26	1.45	1.63			
	TOTAL FCU = SAR Length (385) X Multiplication Factor (0.00125) X Total FCI	0.61	0.70	0.78	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	ecuvery.	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT				
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT				
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel				
S2-TRIB2-(3)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream				
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and				
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through				
S2-TRIB2-(3)	H3a. Channel Sinuosity	3	3	3	etc.) from outside conservation	increased overbank frequency)				
	H3b. Bottom Substrate Composition	2	2	2	easement	- LWD will increase channel				
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water				
	H3d. Channel Incision	8	8	8	species	- Protection, plantings, and measures				
	H4a. Pools	4	4	4	- Use of large woody debris (LWD) or	to prevent uncontrolled access will				
	H4b. Channel Flow Status	2	2	2	other native material for in-channel structures	improve bank stability, filter runoff,				
Proposed SAR Length (LF):	Hydrologic Subtotal	45	46	48	- Adjustment of channel gradient by	and enhance water quality - Woody debris, leaf litter, and				
187	Hydrologic FCI = Subtotal / 100	45 0.45	40 0.46	40 0.48	installing grade control structures	overhanging herbaceous vegetation				
107	WQ1a. Bank Stability (e)	6	0.40 7	8	(GCS) made from native material	from established buffer zones will				
Mitigation Zone:		0	'	0	(rock or woody debris) where	enhance in-stream habitat and				
Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity				
Stream Classification:	WQ2. Water Clarity	2	2	2	LWD and GCS and other locations					
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	1	1	1	where appropriate - Creation of riparian buffer zones					
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width					
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	on each side) - Creation of protected natural area					
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9	adjacent to riparian buffer zone - Monitoring and management					
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9						
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	35	44	52						
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.44	0.55	0.65						
	HB1. Flow Regime	2	2	2						
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:					
A-16	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of				
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Violity / Diagoophamical Eurotiona: "UP" -				
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Biogeochemical Functions, HB =				
	HB6. Channel Flow Status	2	2	2	(c) FCI = Functional Condition Index.					
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.					
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r					
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a				
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate				
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres					
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.					
	Habitat Subtotal	48	58	66	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not					
	Habitat FCI = Subtotal / 120	0.40	0.48	0.55	provide an accurate representation of ephemera	al stream channel condition within the Lake				
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.29	1.49	1.68	Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams					
	TOTAL FCU = SAR Length (187) X Multiplication Factor (0.00125) X Total FCI	0.30	0.35	0.39	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	ectively.				

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT	
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB2-(4)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB2-(4)	H3a. Channel Sinuosity	6	6	6	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	3	3	3	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	H3d. Channel Incision	8	8	8	species	- Protection, plantings, and measures	
	H4a. Pools	4	4	4	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4b. Channel Flow Status	2	2	2	other native material for in-channel structures	improve bank stability, filter runoff, and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	49	50	52	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
947	Hydrologic FCI = Subtotal / 100	0.49	0.50	0.52	installing grade control structures	overhanging herbaceous vegetation	
547	WQ1a. Bank Stability (e)	6	7	8	(GCS) made from native material	from established buffer zones will	
Mitigation Zone:	WQ1b. Channel Bottom Bank Stability OR	0	1	0	(rock or woody debris) where	enhance in-stream habitat and	
Zone A	Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	WQ2. Water Clarity	1	1	1	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (h)	1	1	1	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width		
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	on each side) - Creation of protected natural area		
	WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	5	7	9	adjacent to riparian buffer zone - Monitoring and management		
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	34	43	51			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.43	0.54	0.64			
	HB1. Flow Regime	2	2	2			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-13	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Violity / Diagoophamical Eurotiona: "HB" -	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Biogeochemical Functions, HB =	
	HB6. Channel Flow Status	2	2	2	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	48	58	66	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake		
	Habitat FCI = Subtotal / 120	0.40	0.48	0.55		ai stream channel condition within the Lake	
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.32	1.52	1.71	Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams		
	TOTAL FCU = SAR Length (947) X Multiplication Factor (0.00125) X Total FCI	1.56	1.80	2.02	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	iecuveiy.	

STREAM ASSESSMENT REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	END OF CONSTRUCTION	END OF MONITORING	AT MATURITY	MITIGATION ACTIVITIES / WORK PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB2-(5)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
2-TRIB2-(5)	H3a. Channel Sinuosity	6	6	6	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	4	4	4	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	- Supplemental plantings of native trees, shrubs, and herbaceous species	roughness and improve bank stability - Created pools will retain water	
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	 Protection, plantings, and measures to prevent uncontrolled access will 	
	H4a. Pools	4	4	4	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	2	2	2	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	50	51	53	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
994	Hydrologic FCI = Subtotal / 100	0.50	0.51	0.53	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability (e)	6	7	8	(GCS) made from native material	from established buffer zones will	
	WQ1b. Channel Bottom Bank Stability OR			<u> </u>	(rock or woody debris) where	enhance in-stream habitat and	
Zone A	Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
	WQ2. Water Clarity	3	3	3	LWD and GCS and other locations		
Ephemeral	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	1	1	1	where appropriate - Creation of riparian buffer zones		
	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width		
		3	5		on each side)		
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	 Creation of protected natural area adjacent to riparian buffer zone 		
	WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	5	7	9	- Monitoring and management		
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	36	45	53			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.45	0.56	0.66			
	HB1. Flow Regime	2	2	2			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-13	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Eurotions: "HB" -	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.		
	HB6. Channel Flow Status	2	2	2	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r	ight bank scores.	
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	obally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	48	58	66	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not		
	Habitat FCI = Subtotal / 120	0.40	0.48	0.55	provide an accurate representation of ephemera	al stream channel condition within the Lake	
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.35	1.55	1.74	Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams		
	TOTAL FCU = SAR Length (994) X Multiplication Factor (0.00125) X Total FCI	1.68	1.93	2.16	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	Jocuroly.	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT				
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT				
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel				
S2-TRIB2-(6)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream				
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and				
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through				
S2-TRIB2-(6)	H3a. Channel Sinuosity	5	5	5	etc.) from outside conservation easement	increased overbank frequency) - LWD will increase channel				
	H3b. Bottom Substrate Composition	2	2	2	- Supplemental plantings of native	roughness and improve bank stability				
	H3c. Instream Bottom Topography OR Manning's n (f)	3	3	4	trees, shrubs, and herbaceous	- Created pools will retain water				
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	 Protection, plantings, and measures to prevent uncontrolled access will 				
	H4a. Pools	5	5	5	other native material for in-channel	improve bank stability, filter runoff,				
	H4b. Channel Flow Status	2	2	2	structures	and enhance water quality				
Proposed SAR Length (LF):	Hydrologic Subtotal	49	50	52	- Adjustment of channel gradient by	- Woody debris, leaf litter, and				
1,630	Hydrologic FCI = Subtotal / 100	0.49	0.50	0.52	installing grade control structures	overhanging herbaceous vegetation				
,	WQ1a. Bank Stability (e)	6	7	8	(GCS) made from native material	from established buffer zones will				
	WQ1b. Channel Bottom Bank Stability OR				(rock or woody debris) where	enhance in-stream habitat and				
Zone A	Channel Sediments or Substrate Composition (<i>e</i> , <i>g</i>)	7	7	7	appropriate - Creation of pools in combination with	biological productivity				
Stream Classification:	WQ2. Water Clarity	1	1	1	LWD and GCS and other locations					
Ephemeral	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (h)	1	1	1	where appropriate - Creation of riparian buffer zones around abannel (minimum of 60) width					
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width on each side)					
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	9	9	9	- Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management					
	WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	5	7	9						
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9						
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	34	43	51						
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.43	0.54	0.64						
	HB1. Flow Regime	2	2	2						
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:					
A-13	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of				
	HB4. Pool Variability	4	4	4	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Eurotions: "HB" -				
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Diogeochemical runctions, The -				
	HB6. Channel Flow Status	2	2	2	(c) FCI = Functional Condition Index.					
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.					
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r					
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a				
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate				
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres	ents the channel condition within the Lake				
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.					
	Habitat Subtotal	49	59	67	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake					
	Habitat FCI = Subtotal / 120	0.41	0.49	0.56	Ralph Hall project watershed.					
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.33	1.53	1.72	 (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively. 					
	TOTAL FCU = SAR Length (1630) X Multiplication Factor (0.00125) X Total FCI	2.71	3.12	3.50						

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel
S2-TRIB2-(7)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and
Baseline SAR Name(s):	H2c. Channel Bank Stability (e)	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through
S2-TRIB2-(7),	H3a. Channel Sinuosity	5	5	5	etc.) from outside conservation easement	increased overbank frequency) - LWD will increase channel
S2-TRIB2-B9-(1)	H3b. Bottom Substrate Composition	1	1	1	- Supplemental plantings of native	roughness and improve bank stability
	H3c. Instream Bottom Topography OR Manning's n <i>(f)</i>	4	4	5	trees, shrubs, and herbaceous	- Created pools will retain water - Protection, plantings, and measures
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will
	H4a. Pools	5	5	5	other native material for in-channel	improve bank stability, filter runoff,
	H4b. Channel Flow Status	2	2	2	structures	and enhance water quality
Proposed SAR Length (LF):	Hydrologic Subtotal	49	50	52	- Adjustment of channel gradient by	- Woody debris, leaf litter, and
889	Hydrologic FCI = Subtotal / 100	0.49	0.50	0.52	installing grade control structures	overhanging herbaceous vegetation
	WQ1a. Bank Stability <i>(e)</i>	6	7	8	(GCS) made from native material	from established buffer zones will
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	(rock or woody debris) where appropriate - Creation of pools in combination with	enhance in-stream habitat and biological productivity
Stream Classification:	WQ2. Water Clarity	1	1	1	LWD and GCS and other locations	
Ephemeral	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	1	1	1	where appropriate - Creation of riparian buffer zones	
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width on each side)	
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	9	9	9	- Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management	
	WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	5	7	9		
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9		
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	34	43	51		
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.43	0.54	0.64		
	HB1. Flow Regime	2	2	2		
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:	
A-10	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D Mitigation Plan) for scoring methodology.	ocumentation (included in Appendix C of
	HB4. Pool Variability	4	4	4	(b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Functions: "HB" =
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	
	HB6. Channel Flow Status	2	2	2	(c) FCI = Functional Condition Index.	
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.(e) Score shown is the average of the left and r	isht hank agarag
	HB8. Channel Sinuosity	3	3	3	(f) Instream bottom topography was globally us	ed in lieu of Manning's N as it allows for a
	HB9. Bank Stability <i>(e)</i>	6	7	8	visual assessment of the stream reach.	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres Ralph Hall project watershed.	ents the channel condition within the Lake
	HB12. Riparian Habitat Condition	2	5	7	(h) Nutrient Enrichment was used globally for s	coring because Aquatic Vegetation does not
	Habitat Subtotal Habitat FCI = Subtotal / 120	49	59	67	provide an accurate representation of ephemera	
	Habitat FCI = Subtotal / 120	0.41	0.49	0.56	Ralph Hall project watershed.	
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.33	1.53	1.72	(i) The Multiplication Factor is determined by the factors for Perennial, Intermittent with Perennia are 0.0038, 0.00315, 0.0025, and 0.00125, resp.	Pools, Intermittent, and Ephemeral Streams
	TOTAL FCU = SAR Length (889) X Multiplication Factor (0.00125) X Total FCI	1.48	1.70	1.91	· · · · · · · · · · · · · · · · · · ·	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK					
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT				
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel				
S2-TRIB2-(8a)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream				
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and				
	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through				
S2-TRIB2-(8)	H3a. Channel Sinuosity	6	6	6	etc.) from outside conservation easement	increased overbank frequency)				
	H3b. Bottom Substrate Composition	1	1	1	- Supplemental plantings of native	 LWD will increase channel roughness and improve bank stability 				
	H3c. Instream Bottom Topography OR Manning's n (f)	4	4	5	trees, shrubs, and herbaceous	- Created pools will retain water				
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	 Protection, plantings, and measures to prevent uncontrolled access will 				
	H4a. Pools	5	5	5	other native material for in-channel	improve bank stability, filter runoff,				
	H4b. Channel Flow Status	2	2	2	structures	and enhance water quality				
Proposed SAR Length (LF):	Hydrologic Subtotal	50	51	53	- Adjustment of channel gradient by	- Woody debris, leaf litter, and				
2,582	Hydrologic FCI = Subtotal / 100	0.50	0.51	0.53	installing grade control structures	overhanging herbaceous vegetation				
,	WQ1a. Bank Stability <i>(e)</i>	6	7	8	(GCS) made from native material	from established buffer zones will				
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e.	7	7	7	(rock or woody debris) where appropriate	enhance in-stream habitat and biological productivity				
	g)				- Creation of pools in combination with LWD and GCS and other locations					
	WQ2. Water Clarity	1	1	1	where appropriate					
Ephemeral	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	1	1	1	- Creation of riparian buffer zones around channel (minimum of 60' width					
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	on each side)					
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	9	9	9	- Creation of protected natural area adjacent to riparian buffer zone					
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9	- Monitoring and management					
	WQ6b. Riparian Zone Vegetation Protection/Completeness <i>(e)</i>	2	6	9						
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	34	43	51						
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.43	0.54	0.64						
	HB1. Flow Regime	2	2	2						
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:					
A-7, A-10	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of				
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Eurotions: "HB" -				
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Diogeochemical runctions, The -				
	HB6. Channel Flow Status	2	2	2	(c) FCI = Functional Condition Index.					
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.					
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r					
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a				
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate				
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres					
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.					
	Habitat Subtotal	48	58	66	(h) Nutrient Enrichment was used globally for se provide an accurate representation of ephemeral					
	Habitat FCI = Subtotal / 120	0.40	0.48	0.55	Ralph Hall project watershed.					
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.33	1.53	1.72	(i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams					
	TOTAL FCU = SAR Length (2582) X Multiplication Factor (0.00125) X Total FCI	4.29	4.94	5.55	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	ocurciy.				

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK					
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT				
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel				
S2-TRIB2-(8b)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream				
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and				
aseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through				
S2-TRIB2-(8), S2-TRIB2-(9)	H3a. Channel Sinuosity	8	8	8	etc.) from outside conservation easement	increased overbank frequency)				
	H3b. Bottom Substrate Composition	1	1	1	- Supplemental plantings of native	 LWD will increase channel roughness and improve bank stability 				
	H3c. Instream Bottom Topography OR Manning's n (f)	4	4	5	trees, shrubs, and herbaceous	- Created pools will retain water - Protection, plantings, and measures				
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will				
	H4a. Pools	5	5	5	other native material for in-channel	improve bank stability, filter runoff,				
	H4b. Channel Flow Status	2	2	2	structures	and enhance water quality				
Proposed SAR Length (LF):	Hydrologic Subtotal	52	53	55	- Adjustment of channel gradient by	- Woody debris, leaf litter, and				
3,468	Hydrologic FCI = Subtotal / 100	0.52	0.53	0.55	installing grade control structures	overhanging herbaceous vegetation				
	WQ1a. Bank Stability <i>(e)</i>	6	7	8	(GCS) made from native material	from established buffer zones will				
Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	(rock or woody debris) where appropriate - Creation of pools in combination with	enhance in-stream habitat and biological productivity				
	WQ2. Water Clarity	1	1	1	LWD and GCS and other locations					
Ephemeral	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	1	1	1	where appropriate - Creation of riparian buffer zones					
	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width on each side)					
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	9	9	9	- Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management					
	WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	5	7	9						
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9						
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	34	43	51						
Restoration	= Water Quality / Biogeochemical FCI Subtotal / 80	0.43	0.54	0.64						
	HB1. Flow Regime	2	2	2						
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:					
A-7	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of				
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water G	Quality / Biogeochemical Functions: "HB" =				
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.					
	HB6. Channel Flow Status	2	2	2	(c) FCI = Functional Condition Index.					
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.					
	HB8. Channel Sinuosity	5	5	5	(e) Score shown is the average of the left and n (f) Instream bottom topography was globally us					
	HB9. Bank Stability <i>(e)</i>	6	7	8	visual assessment of the stream reach.	ed in neu of manning's N as it allows for a				
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate				
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres	ents the channel condition within the Lake				
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.					
	Habitat Subtotal	50	60	68	 (h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively. 					
	Habitat FCI = Subtotal / 120	0.42	0.50	0.57						
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.37	1.57	1.76						
	TOTAL FCU = SAR Length (3468) X Multiplication Factor (0.00125) X Total FCI	5.94	6.81	7.63						

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK				
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT			
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel			
S2-TRIB2-A1-(1)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream			
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and			
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through			
2-TRIB2-A1-(1)	H3a. Channel Sinuosity	1	1	1	etc.) from outside conservation	increased overbank frequency)			
	H3b. Bottom Substrate Composition	3	3	3	easement	- LWD will increase channel			
	H3c. Instream Bottom Topography OR Manning's	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water			
	n <i>(f)</i>			-	species	- Protection, plantings, and measures			
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will			
	H4a. Pools	0	0	0	other native material for in-channel	improve bank stability, filter runoff,			
	H4b. Channel Flow Status	0	0	0	structures	and enhance water quality			
Proposed SAR Length (LF):	Hydrologic Subtotal	37	38	40	- Adjustment of channel gradient by	 Woody debris, leaf litter, and 			
649	Hydrologic FCI = Subtotal / 100	0.37	0.38	0.40	installing grade control structures	overhanging herbaceous vegetation			
	WQ1a. Bank Stability <i>(e)</i>	6	7	8	(GCS) made from native material	from established buffer zones will			
	WQ1b. Channel Bottom Bank Stability OR	_	_	_	(rock or woody debris) where appropriate	enhance in-stream habitat and biological productivity			
Zone A	Channel Sediments or Substrate Composition (e,	7	7	7	- Creation of pools in combination with				
Stream Classification:	<i>g)</i> WQ2. Water Clarity	0	0	0	LWD and GCS and other locations				
	WQ3. Nutrient Enrichment OR Presence of		0	0	where appropriate				
Lphemeral	Aquatic Vegetation (h)	0	0	0	- Creation of riparian buffer zones				
Multiplication Factor (i):	WQ4. Composition of Organic Matter	2	3	4	around channel (minimum of 60' width on each side)				
	WQ5. Land Use Pattern Beyond Immediate	•	0	<u> </u>	- Creation of protected natural area				
	Riparian Zone <i>(e)</i>	9	9	9	adjacent to riparian buffer zone				
	WQ6a. Riparian Zone Width (from stream edge	5	7	9	- Monitoring and management				
	to field) (e)	5	1	9					
	WQ6b. Riparian Zone Vegetation	2	6	9					
	Protection/Completeness (e)	2	6	9					
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	31	39	46					
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.39	0.49	0.58					
	HB1. Flow Regime	1	1	1					
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:				
A-13	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of			
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Violity / Biogeophemical Eurotiana, "HP" -			
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Biogeochemical Functions, HB =			
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.				
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.				
	HB8. Channel Sinuosity	1	1	1	(e) Score shown is the average of the left and r				
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a			
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate			
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres				
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.				
	Habitat Subtotal	43	53	61	(h) Nutrient Enrichment was used globally for s				
	Habitat FCI = Subtotal / 120	0.36	0.44	0.51	provide an accurate representation of ephemera Ralph Hall project watershed.	ai stream channel condition within the Lake			
	TOTAL FCI = Hydrologic FCI + Water Quality /				(i) The Multiplication Factor is determined by the				
	Biogeochemical FCI + Habitat FCI	1.12	1.31	1.49	factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Stre are 0.0038, 0.00315, 0.0025, and 0.00125, respectively.				
	TOTAL FCU = SAR Length (649) X	0.01			· · · · · · · · · · · · · · · · · · ·				
	Multiplication Factor (0.00125) X Total FCI	0.91	1.06	1.21					

STREAM ASSESSMENT	SWAMPIM METRICS (a, b, c, d)	END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT				
REACH (SAR) INFORMATION	SWAMPIN METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT				
	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel				
S2-TRIB2-A1-(2)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream				
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and				
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through				
S2-TRIB2-A1-(2)	H3a. Channel Sinuosity	1	1	1	etc.) from outside conservation easement	increased overbank frequency)				
	H3b. Bottom Substrate Composition	1	1	1		- LWD will increase channel				
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water				
	H3d. Channel Incision	8	8	8	species	- Protection, plantings, and measures				
	H4a. Pools	0	0	0	- Use of large woody debris (LWD) or	to prevent uncontrolled access will				
	H4b. Channel Flow Status	0	0	0	other native material for in-channel	improve bank stability, filter runoff,				
	Hydrologic Subtotal	35	36	38	structures	and enhance water quality				
Proposed SAR Length (LF): 91	, , , , , , , , , , , , , , , , , , , ,				- Adjustment of channel gradient by	- Woody debris, leaf litter, and				
91	Hydrologic FCI = Subtotal / 100 WQ1a. Bank Stability (e)	0.35 6	0.36	0.38	installing grade control structures (GCS) made from native material	overhanging herbaceous vegetation from established buffer zones will				
Million Constant		6	7	8	(rock or woody debris) where	enhance in-stream habitat and				
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity				
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations					
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (h)	0	0	0	where appropriate - Creation of riparian buffer zones					
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width					
	WQ5. Land Use Pattern Beyond Immediate	9	9	9	on each side) - Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management					
	Riparian Zone <i>(e)</i> WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	5	7	9						
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9						
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	41	49						
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.51	0.61						
	HB1. Flow Regime	1	1	1						
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:					
A-13	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of				
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology.					
	HB5. Sediment Deposition and Scouring	7	7	7	(b) "H" = Hydrologic Functions; "WQ" = Water C Habitat Functions.	quality / Biogeochemical Functions, HB =				
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.					
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.					
	HB8. Channel Sinuosity	1	1	1	(e) Score shown is the average of the left and r					
	HB9. Bank Stability (e)	6	7	8	(f) Instream bottom topography was globally us	ed in lieu of Manning's N as it allows for a				
	HB10. Vegetative Protection (e)	2	6	9	visual assessment of the stream reach. (g) Channel Bottom Bank Stability was used glo	obally instead of Channel Sediment/Substrate				
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres					
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.					
	Habitat Subtotal	43	53	61	(h) Nutrient Enrichment was used globally for s					
	Habitat FCI = Subtotal / 120	0.36	0.44	0.51	provide an accurate representation of ephemer	al stream channel condition within the Lake				
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.11	1.31	1.50	Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Stream.					
	TOTAL FCU = SAR Length (91) X Multiplication Factor (0.00125) X Total FCI	0.13	0.15	0.17	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	Jocuvoly.				

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK					
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT				
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel				
S2-TRIB2-A1-(3)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream				
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and				
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through				
S2-TRIB2-A1-(3)	H3a. Channel Sinuosity	3	3	3	etc.) from outside conservation	increased overbank frequency)				
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel				
	H3c. Instream Bottom Topography OR Manning's n (f)	4	4	5	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water				
	H3d. Channel Incision	8	8	8	species	- Protection, plantings, and measures				
	H4a. Pools	0	0	0 0	- Use of large woody debris (LWD) or	to prevent uncontrolled access will				
	H4b. Channel Flow Status	0	0	0	other native material for in-channel	improve bank stability, filter runoff,				
Proposed SAR Length (LF):	Hydrologic Subtotal	39	40	42	structures	and enhance water quality				
369	Hydrologic FCI = Subtotal / 100		40 0.40	4Z 0.42	 Adjustment of channel gradient by installing grade control structures 	 Woody debris, leaf litter, and overhanging herbaceous vegetation 				
309	WQ1a. Bank Stability (e)	0.39 6	0.40		(GCS) made from native material	from established buffer zones will				
Mitigation Zone:		0	1	8	(rock or woody debris) where	enhance in-stream habitat and				
Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity				
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations					
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	0	0	0	where appropriate - Creation of riparian buffer zones					
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width					
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	on each side) - Creation of protected natural area					
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9	adjacent to riparian buffer zone - Monitoring and management					
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9						
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	41	49						
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.51	0.61						
	HB1. Flow Regime	1	1	1						
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:					
A-13	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of				
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Eurotions: "HB" -				
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Diogeochemical runctions, The -				
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.					
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.					
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r					
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a				
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate				
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres					
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.					
	Habitat Subtotal	45	55	63	(h) Nutrient Enrichment was used globally for se provide an accurate representation of ephemeral					
	Habitat FCI = Subtotal / 120	0.38	0.46	0.53	Ralph Hall project watershed.	a sucan channel condition within the Lake				
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.17	1.37	1.56	(i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively.					
	TOTAL FCU = SAR Length (369) X Multiplication Factor (0.00125) X Total FCI	0.54	0.63	0.72	and 0.0000, 0.00010, 0.0020, and 0.00120, 163	loonoy.				

STREAM ASSESSMENT	SWAMPIM METRICS (a, b, c, d)	END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT				
REACH (SAR) INFORMATION		CONSTRUCTION	MONITORING	MATURITY	PERFORMED					
	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel				
S2-TRIB2-A1-B1-(1)	H2a. Channel Condition/ Alteration	3	5	8	mititgation area	downcutting and improve stream				
	H2b. Channel Capacity to Flow Frequency	3	5	7	- Implementation of measures to	stability, sediment transport, and				
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	4	6	7	prevent uncontrolled access (cattle,	floodplain connectivity (through				
2-TRIB2-A1-B1-(1)	H3a. Channel Sinuosity	3	3	3	etc.) from outside conservation	increased overbank frequency)				
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel				
	H3c. Instream Bottom Topography OR Manning's n (f)	2	3	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water				
	H3d. Channel Incision	3	3	3	species	- Protection, plantings, and measures				
	H4a. Pools	0	0	0	- Use of large woody debris (LWD) or	to prevent uncontrolled access will				
	H4b. Channel Flow Status	0	0	0	other native material for in-channel structures	improve bank stability, filter runoff, and enhance water quality				
Proposed SAR Length (LF):	Hydrologic Subtotal	20	27	33	- Adjustment of channel gradient by	- Woody debris, leaf litter, and				
244	Hydrologic FCI = Subtotal / 100	0.20	0.27	0.33	installing grade control structures	overhanging herbaceous vegetation				
244	WQ1a. Bank Stability (e)	4	6	7	(GCS) made from native material	from established buffer zones will				
Mitigation Zone:	WQ1b. Channel Bottom Bank Stability OR	4	0	1	(rock or woody debris) where	enhance in-stream habitat and				
Zone A	Channel Sediments or Substrate Composition (e, g)	4	6	7	appropriate - Creation of pools in combination with	biological productivity				
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations					
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	0	0	0	where appropriate - Creation of riparian buffer zones					
Multiplication Factor (i):	WQ4. Composition of Organic Matter	2	4	6	around channel (minimum of 60' width					
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	5	7	9	on each side) - Creation of protected natural area					
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	3	6	9	adjacent to riparian buffer zone - Monitoring and management					
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	4	7	9						
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	22	36	47						
Enhancement	Water Quality / Biogeochemical FCI = Subtotal / 80	0.28	0.45	0.59						
	HB1. Flow Regime	1	1	1						
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	1	2	3	Notes:					
A-13	HB3. Stream Bottom Substrate	2	2	2	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of				
	HB4. Pool Variability	1	2	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Violity / Biogeophemical Eurotianes "HP" -				
	HB5. Sediment Deposition and Scouring	2	5	7	Habitat Functions.	quality / Biogeochemical Functions, HB =				
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.					
	HB7. Channel Alteration	2	5	7	(d) FCU = Functional Capacity Unit.					
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r					
	HB9. Bank Stability (e)	4	6	7	(f) Instream bottom topography was globally us	ed in lieu of Manning's N as it allows for a				
	HB10. Vegetative Protection (e)	4	7	9	visual assessment of the stream reach. (g) Channel Bottom Bank Stability was used glo	hally instead of Channel Sediment/Substrate				
	HB11. Riparian Zone (e)	3	6	9	Composition because it more accurately repres					
	HB12. Riparian Habitat Condition	4	5	7	Ralph Hall project watershed.					
	Habitat Subtotal	27	44	58	(h) Nutrient Enrichment was used globally for s					
	Habitat FCI = Subtotal / 120	0.23	0.37	0.48	provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams					
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	0.71	1.09	1.40						
	TOTAL FCU = SAR Length (244) X Multiplication Factor (0.00125) X Total FCI	0.22	0.33	0.43	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	ectively.				

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK				
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT			
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel			
S2-TRIB2-A2-(1)	H2a. Channel Condition/ Alteration	5	6	7	mititgation area	downcutting and improve stream			
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and			
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	8	8	8	prevent uncontrolled access (cattle,	floodplain connectivity (through			
S2-TRIB2-A2-(1)	H3a. Channel Sinuosity	1	1	1	etc.) from outside conservation	increased overbank frequency)			
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel			
	H3c. Instream Bottom Topography OR Manning's	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water			
	n <i>(f)</i>	Z	2	5	species	- Protection, plantings, and measures			
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will			
	H4a. Pools	0	0	0	other native material for in-channel	improve bank stability, filter runoff,			
	H4b. Channel Flow Status	0	0	0	structures	and enhance water quality			
Proposed SAR Length (LF):	Hydrologic Subtotal	34	35	37	- Adjustment of channel gradient by	- Woody debris, leaf litter, and			
129	Hydrologic FCI = Subtotal / 100	0.34	0.35	0.37	installing grade control structures	overhanging herbaceous vegetation			
	WQ1a. Bank Stability <i>(e)</i>	8	8	8	(GCS) made from native material	from established buffer zones will			
	WQ1b. Channel Bottom Bank Stability OR				(rock or woody debris) where	enhance in-stream habitat and			
Zone A	Channel Sediments or Substrate Composition (e,	8	8	8	appropriate	biological productivity			
	g)				 Creation of pools in combination with LWD and GCS and other locations 				
	WQ2. Water Clarity	0	0	0	where appropriate				
Ephemeral	WQ3. Nutrient Enrichment OR Presence of	0	0	0	- Creation of riparian buffer zones				
	Aquatic Vegetation (h)			-	around channel (minimum of 60' width				
Multiplication Factor (i):	WQ4. Composition of Organic Matter	2	3	5	on each side)				
0.00125	WQ5. Land Use Pattern Beyond Immediate	6	7	9	- Creation of protected natural area				
	Riparian Zone <i>(e)</i>	, °	'	Ű	adjacent to riparian buffer zone				
	WQ6a. Riparian Zone Width (from stream edge	6	7	9	 Monitoring and management 				
	to field) <i>(e)</i>	ů	,	Ű					
	WQ6b. Riparian Zone Vegetation	4	6	9					
	Protection/Completeness (e)		-	-					
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	34	39	48					
Enhancement	Water Quality / Biogeochemical FCI = Subtotal / 80	0.43	0.49	0.60					
	HB1. Flow Regime	1	1	1					
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	1	2	3	Notes:				
A-13	HB3. Stream Bottom Substrate	2	2	2	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of			
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Functions: "HB" =			
	HB5. Sediment Deposition and Scouring	6	7	7	Habitat Functions.				
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.				
	HB7. Channel Alteration	6	7	7	(d) FCU = Functional Capacity Unit.				
	HB8. Channel Sinuosity	1	1	1	(e) Score shown is the average of the left and r (f) Instream bottom topography was globally us				
	HB9. Bank Stability <i>(e)</i>	8	8	8	visual assessment of the stream reach.	ed in neu of manning's N as it allows for a			
	HB10. Vegetative Protection (e)	5	7	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate			
	HB11. Riparian Zone <i>(e)</i>	6	7	9	Composition because it more accurately repres	ents the channel condition within the Lake			
	HB12. Riparian Habitat Condition	4	5	7	Ralph Hall project watershed. (h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake				
	Habitat Subtotal	43	50	57					
	Habitat FCI = Subtotal / 120	0.36	0.42	0.48	Ralph Hall project watershed.				
	TOTAL FCI = Hydrologic FCI + Water Quality /				(i) The Multiplication Factor is determined by the				
	Biogeochemical FCI + Habitat FCI	113	1.26	1.45	factors for Perennial, Intermittent with Perennia				
		1	1	і Г	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	bectively.			
	TOTAL FCU = SAR Length (129) X	018	0.20	0.23					
	Multiplication Factor (0.00125) X Total FCI	-	-	-					

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT			
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT			
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel			
S2-TRIB2-A2-(2)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream			
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and			
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through			
S2-TRIB2-A2-(2)	H3a. Channel Sinuosity	3	3	3	etc.) from outside conservation easement	increased overbank frequency) - LWD will increase channel			
	H3b. Bottom Substrate Composition	3	3	3	- Supplemental plantings of native	roughness and improve bank stability			
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	trees, shrubs, and herbaceous	 Created pools will retain water Protection, plantings, and measures 			
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will			
	H4a. Pools	0	0	0	other native material for in-channel	improve bank stability, filter runoff,			
	H4b. Channel Flow Status	0	0	0	structures	and enhance water quality			
Proposed SAR Length (LF):	Hydrologic Subtotal	39	40	42	- Adjustment of channel gradient by	- Woody debris, leaf litter, and			
450	Hydrologic FCI = Subtotal / 100	0.39	0.40	0.42	installing grade control structures	overhanging herbaceous vegetation			
	WQ1a. Bank Stability <i>(e)</i>	6	7	8	(GCS) made from native material	from established buffer zones will			
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	(rock or woody debris) where appropriate - Creation of pools in combination with	enhance in-stream habitat and biological productivity			
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations				
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	0	0	0	where appropriate - Creation of riparian buffer zones around channel (minimum of 60' width on each side) - Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management				
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7					
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	9	9	9					
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9					
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9					
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	41	49					
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.51	0.61					
	HB1. Flow Regime	1	1	1					
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:				
A-13	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D Mitigation Plan) for scoring methodology.	ocumentation (included in Appendix C of			
	HB4. Pool Variability	3	3	3	(b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Functions: "HB" =			
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	() ·g			
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.				
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.				
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r (f) Instream bottom topography was globally us				
	HB9. Bank Stability <i>(e)</i>	6	7	8	visual assessment of the stream reach.				
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate			
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres	ents the channel condition within the Lake			
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.	poring bosoupo Agustio Variation dasa ant			
	Habitat Subtotal	45	55	63	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake				
	Habitat FCI = Subtotal / 120	0.38	0.46	0.53	Ralph Hall project watershed.				
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.17	1.37	1.56	(i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively.				
	TOTAL FCU = SAR Length (450) X Multiplication Factor (0.00125) X Total FCI	0.66	0.77	0.88	· · · · · · · · · · · · · · · · · · ·				

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT	
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB2-A2-(3)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB2-A2-(3)	H3a. Channel Sinuosity	3	3	3	etc.) from outside conservation easement	increased overbank frequency)	
	H3b. Bottom Substrate Composition	3	3	3	- Supplemental plantings of native	 LWD will increase channel roughness and improve bank stability 	
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	trees, shrubs, and herbaceous	- Created pools will retain water	
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	 Protection, plantings, and measures to prevent uncontrolled access will 	
	H4a. Pools	4	4	4	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	2	2	2	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	46	47	49	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
362	Hydrologic FCI = Subtotal / 100	0.46	0.47	0.49	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	6	7	8	(GCS) made from native material	from established buffer zones will	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e,	7	7	7	(rock or woody debris) where appropriate - Creation of pools in combination with	enhance in-stream habitat and biological productivity	
Chranes Classifications	g) MOQ Mater Clarity	1	1	4	LWD and GCS and other locations		
	WQ2. Water Clarity	1	1	1	where appropriate		
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation <i>(h)</i>	1	1	1	- Creation of riparian buffer zones around channel (minimum of 60' width		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	on each side)		
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	9	9	9	- Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	5	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	34	43	51			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.43	0.54	0.64			
	HB1. Flow Regime	2	2	2			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-13	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Functions: "HB" =	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	addity , Biogeochermour , anotione, The	
	HB6. Channel Flow Status	2	2	2	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r (f) Instream bottom topography was globally us		
	HB9. Bank Stability <i>(e)</i>	6	7	8	visual assessment of the stream reach.	ed in neu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres	ents the channel condition within the Lake	
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	48	58	66	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake		
	Habitat FCI = Subtotal / 120	0.40	0.48	0.55	Ralph Hall project watershed.		
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.29	1.49	1.68	 (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively. 		
	TOTAL FCU = SAR Length (362) X Multiplication Factor (0.00125) X Total FCI	0.58	0.67	0.76			

STREAM ASSESSMENT	SWAMPIM METRICS (a, b, c, d)	END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT	
REACH (SAR) INFORMATION		CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB2-A2-B5-(1)	H2a. Channel Condition/ Alteration	5	6	7	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	8	8	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB2-A2-B5-(1)	H3a. Channel Sinuosity	1	1	1	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	n (f)	0	0		species	- Protection, plantings, and measures	
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	0	0	0	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	-	-	0	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	34	35	37	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
49	Hydrologic FCI = Subtotal / 100	0.34	0.35	0.37	installing grade control structures (GCS) made from native material	overhanging herbaceous vegetation from established buffer zones will	
	WQ1a. Bank Stability (e)	8	8	8	(rock or woody debris) where	enhance in-stream habitat and	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	0	0	0	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	1	3	5	around channel (minimum of 60' width		
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	6	7	9	on each side) - Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	6	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	4	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	38	47			
Enhancement	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.48	0.59			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	1	2	3	Notes:		
A-13	HB3. Stream Bottom Substrate	3	3	3	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	1	2	2	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Eurotions: "HB" -	
	HB5. Sediment Deposition and Scouring	4	5	6	Habitat Functions.	quality / Diogeochemical Functions, ThD =	
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	6	7	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	1	1	1	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	8	8	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	5	7	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	6	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	4	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	40	48	57	 (h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively. 		
	Habitat FCI = Subtotal / 120	0.33	0.40	0.48			
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.07	1.23	1.44			
	TOTAL FCU = SAR Length (49) X Multiplication Factor (0.00125) X Total FCI	0.07	0.08	0.09	are 0.0000, 0.00010, 0.0020, and 0.00120, lesp	oouvory.	

STREAM ASSESSMENT	SWAMPIM METRICS (a, b, c, d)	END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT	
REACH (SAR) INFORMATION		CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
- ()	H2a. Channel Condition/ Alteration	5	6	7	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	8	8	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB2-A2-B6-(1)	H3a. Channel Sinuosity	1	1	1	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	H3d. Channel Incision	8	8	8	species	- Protection, plantings, and measures	
	H4a. Pools	0	0	0	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4b. Channel Flow Status	0	0	0	other native material for in-channel	improve bank stability, filter runoff,	
Proposed SAR Length (LF):	Hydrologic Subtotal	34	35	37	structures	and enhance water quality	
Proposed SAR Length (LF): 61	, ,			-	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
÷ .	Hydrologic FCI = Subtotal / 100 WQ1a. Bank Stability (e)	0.34 8	0.35	0.37	installing grade control structures (GCS) made from native material	overhanging herbaceous vegetation from established buffer zones will	
		8	8	8	(rock or woody debris) where	enhance in-stream habitat and	
Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
Ephemeral	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	0	0	0	where appropriate - Creation of riparian buffer zones		
	WQ4. Composition of Organic Matter	2	3	5	around channel (minimum of 60' width		
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	6	7	9	on each side) - Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	6	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	4	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	33	38	47			
Enhancement	Water Quality / Biogeochemical FCI = Subtotal / 80	0.41	0.48	0.59			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	1	2	3	Notes:		
	HB3. Stream Bottom Substrate	3	3	3	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	1	2	2	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Violity / Biogeophemical Eurotiana, "HP" -	
	HB5. Sediment Deposition and Scouring	4	5	6	Habitat Functions.	quality / Biogeochemical Functions, HB =	
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	6	7	7	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	1	1	1	(e) Score shown is the average of the left and r		
	HB9. Bank Stability (e)	8	8	8	(f) Instream bottom topography was globally us	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	5	7	9	visual assessment of the stream reach. (g) Channel Bottom Bank Stability was used glo	hally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	6	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	4	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	40	48	56	(h) Nutrient Enrichment was used globally for s		
	Habitat FCI = Subtotal / 120	0.33	0.40	0.47	provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams		
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.08	1.23	1.43			
	TOTAL FCU = SAR Length (61) X Multiplication Factor (0.00125) X Total FCI	0.08	0.09	0.11	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	ecuvery.	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT	
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB2-A2-B7-(1)	H2a. Channel Condition/ Alteration	5	6	6	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	8	8	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB2-A2-B7-(1)	H3a. Channel Sinuosity	1	1	1	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	n (f)	0	0		species	- Protection, plantings, and measures	
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools H4b. Channel Flow Status	0	0	0	other native material for in-channel	improve bank stability, filter runoff,	
		-	-	0	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	34	35	36	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
230	Hydrologic FCI = Subtotal / 100 WQ1a. Bank Stability (e)	0.34 8	0.35	0.36	installing grade control structures (GCS) made from native material	overhanging herbaceous vegetation from established buffer zones will	
Mitianation Zanas		8	8	8	(rock or woody debris) where	enhance in-stream habitat and	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	0	0	0	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	1	4	5	around channel (minimum of 60' width		
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	6	7	9	on each side) - Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	6	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	4	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	39	47			
Enhancement	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.49	0.59	-		
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	1	2	3	Notes:		
A-13	HB3. Stream Bottom Substrate	3	3	3	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	2	2	2	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Eurotions: "HB" -	
	HB5. Sediment Deposition and Scouring	4	5	7	Habitat Functions.	quality / Diogeochemical Functions, ThD =	
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	6	6	7	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	1	1	1	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	8	8	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	5	7	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	6	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	4	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	41	47	57	(h) Nutrient Enrichment was used globally for s		
	Habitat FCI = Subtotal / 120	0.34	0.39	0.48	provide an accurate representation of ephemera Ralph Hall project watershed.	αι διτεατή επατίπει conuition within the Lake	
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.08	1.23	1.43	Raiph Hail project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively.		
	TOTAL FCU = SAR Length (230) X Multiplication Factor (0.00125) X Total FCI	0.31	0.35	0.41	are 0.0000, 0.00010, 0.0020, and 0.00120, lesp	actively.	

STREAM ASSESSMENT	SWAMPIM METRICS (a, b, c, d)	END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT	
REACH (SAR) INFORMATION	SWAMPINI METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB2-A2-B8-(1)	H2a. Channel Condition/ Alteration	5	6	7	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	5	6	7	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB2-A2-B8-(1)	H3a. Channel Sinuosity	1	1	1	etc.) from outside conservation easement	increased overbank frequency) - LWD will increase channel	
	H3b. Bottom Substrate Composition	1	1	1	- Supplemental plantings of native	roughness and improve bank stability	
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	trees, shrubs, and herbaceous	- Created pools will retain water - Protection, plantings, and measures	
	H3d. Channel Incision	4	6	7	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	0	0	0	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	0	0	0	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	27	31	35	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
183	Hydrologic FCI = Subtotal / 100	0.27	0.31	0.35	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	5	6	7	(GCS) made from native material	from established buffer zones will	
	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition <i>(e,</i>	5	6	7	(rock or woody debris) where appropriate	enhance in-stream habitat and biological productivity	
	g)				- Creation of pools in combination with LWD and GCS and other locations		
	WQ2. Water Clarity	0	0	0			
Ephemeral	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	0	0	0	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	1	3	5	around channel (minimum of 60' width on each side)		
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	6	7	9	- Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	6	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	4	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	27	35	46			
Enhancement	Water Quality / Biogeochemical FCI = Subtotal / 80	0.34	0.44	0.58			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	1	2	4	Notes:		
A-13	HB3. Stream Bottom Substrate	2	2	2	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	1	2	4	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water G	Quality / Biogeochemical Eurocions: "HB" =	
	HB5. Sediment Deposition and Scouring	6	7	7	Habitat Functions.	addity , Biogeochermour , anotione, The	
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	6	7	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	1	1	1	(e) Score shown is the average of the left and n (f) Instream bottom topography was globally us		
	HB9. Bank Stability <i>(e)</i>	5	6	7	visual assessment of the stream reach.	ed in neu of manning's N as it allows for a	
	HB10. Vegetative Protection (e)	5	7	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone <i>(e)</i>	6	7	9	Composition because it more accurately repres	ents the channel condition within the Lake	
	HB12. Riparian Habitat Condition	4	5	7	Ralph Hall project watershed. (h) Nutrient Enrichment was used globally for si	poring boodupo Aquatio Variation door ant	
	Habitat Subtotal	38	47	59	provide an accurate representation of ephemera		
	Habitat FCI = Subtotal / 120	0.32	0.39	0.49	Ralph Hall project watershed.		
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	0.93	1.14	1.42	(i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Stream are 0.0038, 0.00315, 0.0025, and 0.00125, respectively.		
	TOTAL FCU = SAR Length (183) X Multiplication Factor (0.00125) X Total FCI	0.21	0.26	0.32		····· · · · · ·	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK				
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT			
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel			
S2-TRIB2-A3-(1)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream			
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and			
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through			
N/A	H3a. Channel Sinuosity	1	1	1	etc.) from outside conservation	increased overbank frequency)			
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel			
	H3c. Instream Bottom Topography OR Manning's	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water			
	n <i>(f)</i>	2	2	5	species	- Protection, plantings, and measures			
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will			
	H4a. Pools	0	0	0	other native material for in-channel	improve bank stability, filter runoff,			
	H4b. Channel Flow Status	0	0	0	structures	and enhance water quality			
Proposed SAR Length (LF):	Hydrologic Subtotal	35	36	38	- Adjustment of channel gradient by	- Woody debris, leaf litter, and			
549	Hydrologic FCI = Subtotal / 100	0.35	0.36	0.38	installing grade control structures	overhanging herbaceous vegetation			
	WQ1a. Bank Stability <i>(e)</i>	6	7	8	(GCS) made from native material	from established buffer zones will			
	WQ1b. Channel Bottom Bank Stability OR				(rock or woody debris) where	enhance in-stream habitat and			
Zone A	Channel Sediments or Substrate Composition (e,	7	7	7	appropriate	biological productivity			
	g)				 Creation of pools in combination with LWD and GCS and other locations 				
	WQ2. Water Clarity	0	0	0	where appropriate				
Ephemeral	WQ3. Nutrient Enrichment OR Presence of	0	0	0	- Creation of riparian buffer zones				
	Aquatic Vegetation (h)				around channel (minimum of 60' width				
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	3	4	on each side)				
0.00125	WQ5. Land Use Pattern Beyond Immediate	9	9	9	- Creation of protected natural area				
	Riparian Zone <i>(e)</i>	9	9	3	adjacent to riparian buffer zone				
	WQ6a. Riparian Zone Width (from stream edge	5	7	9	 Monitoring and management 				
	to field) <i>(e)</i>	0	,	3					
	WQ6b. Riparian Zone Vegetation	2	6	9					
	Protection/Completeness (e)		-						
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	39	46					
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.49	0.58					
	HB1. Flow Regime	1	1	1					
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:				
A-13	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	Oocumentation (included in Appendix C of			
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology.				
	HB5. Sediment Deposition and Scouring	7	7	7	(b) "H" = Hydrologic Functions; "WQ" = Water (Habitat Functions.	Quality / Biogeochemical Functions; "HB" =			
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.				
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.				
	HB8. Channel Sinuosity	1	1	1	(e) Score shown is the average of the left and r				
	HB9. Bank Stability (e)	6	7	8	(f) Instream bottom topography was globally us	ed in lieu of Manning's N as it allows for a			
	HB10. Vegetative Protection (e)	2	6	9	visual assessment of the stream reach. (g) Channel Bottom Bank Stability was used glo	obally instead of Channel Sediment/Substrate			
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres				
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.				
	Habitat Subtotal	43	53	61	 (h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication 				
	Habitat FCI = Subtotal / 120	0.36	0.44	0.51					
	TOTAL FOL - Undralagia FOL - Water Overling			1					
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogroschamical ECI + Habitat ECI	1.11	1.29	1.47	factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephern				
	Biogeochemical FCI + Habitat FCI		are 0.0038, 0.00315, 0.0025, an						
	TOTAL FCU = SAR Length (549) X	0.76	0.89	1.01					
	Multiplication Factor (0.00125) X Total FCI	0.76	0.09	1.01					

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB2-A3-(2)	H2a. Channel Condition/ Alteration	3	5	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	3	5	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	7	prevent uncontrolled access (cattle,	floodplain connectivity (through	
2-TRIB2-A3-(2)	H3a. Channel Sinuosity	3	3	3	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	H3d. Channel Incision	7	5	7	species	- Protection, plantings, and measures	
	H4a. Pools	0	0	0	 Use of large woody debris (LWD) or other native material for in-channel 	to prevent uncontrolled access will improve bank stability, filter runoff,	
	H4b. Channel Flow Status	0	0	0	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	26	29	38	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
202	Hydrologic FCI = Subtotal / 100	0.26	0.29	0.38	installing grade control structures	overhanging herbaceous vegetation	
202	WQ1a. Bank Stability (e)	6	7	7	(GCS) made from native material	from established buffer zones will	
Mitigation Zone:	WQ1b. Channel Bottom Bank Stability OR	0	,	1	(rock or woody debris) where	enhance in-stream habitat and	
Zone A	Channel Sediments or Substrate Composition (e, g)	5	6	7	appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
Ephemeral	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	0	0	0	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width		
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	6	7	9	on each side) - Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	6	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	3	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	29	38	48			
Enhancement	Water Quality / Biogeochemical FCI = Subtotal / 80	0.36	0.48	0.60			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	1	2	3	Notes:		
A-13	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	1	2	2	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Violity / Biogeophemical Eurotianes "HP" -	
	HB5. Sediment Deposition and Scouring	2	4	6	Habitat Functions.	quality / Biogeochemical Functions, HB =	
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	2	4	7	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	6	7	7	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	5	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	6	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	3	4	7	Ralph Hall project watershed.		
	Habitat Subtotal	31	43	58	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not		
	Habitat FCI = Subtotal / 120	0.26	0.36	0.48	provide an accurate representation of ephemera	al stream channel condition within the Lake	
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	0.88	1.13	1.46	Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams		
	TOTAL FCU = SAR Length (202) X Multiplication Factor (0.00125) X Total FCI	0.22	0.29	0.37	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	ecuvery.	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT	
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB2-A3-(3)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	8	8	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB2-A3-(3)	H3a. Channel Sinuosity	1	1	1	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	2	2	2	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's	3	3	4	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	n (f)	-			species	- Protection, plantings, and measures	
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	4	4	4	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	1	1	1	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	45	45	46	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
410	Hydrologic FCI = Subtotal / 100	0.45	0.45	0.46	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	8	8	8	(GCS) made from native material	from established buffer zones will	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition <i>(e,</i>	8	8	8	(rock or woody debris) where appropriate - Creation of pools in combination with	enhance in-stream habitat and biological productivity	
	g)				LWD and GCS and other locations		
	WQ2. Water Clarity	4	4	4	where appropriate		
Ephemeral	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	4	4	4	- Creation of riparian buffer zones around channel (minimum of 60' width		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	5	6	7	on each side)		
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	6	7	9	 Creation of protected natural area adjacent to riparian buffer zone Monitoring and management 		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	6	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	6	7	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	47	51	58			
Enhancement	Water Quality / Biogeochemical FCI = Subtotal / 80	0.59	0.64	0.73			
	HB1. Flow Regime	2	2	2			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-13	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	1	2	2	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Piagaaabamiaal Eurotiona: "HP" -	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Biogeochemical Functions, HB -	
	HB6. Channel Flow Status	1	1	1	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	1	1	1	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	8	8	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in heu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	5	7	9	(g) Channel Bottom Bank Stability was used glo	ballv instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	6	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	5	6	7	Ralph Hall project watershed.		
	Habitat Subtotal	52	57	62	 (h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams on 0.00016. 		
	Habitat FCI = Subtotal / 120	0.43	0.48	0.52			
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.47	1.57	1.71			
	TOTAL FCU = SAR Length (410) X Multiplication Factor (0.00125) X Total FCI	0.75	0.80	0.88	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	inclusery.	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT	
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB2-A3-(4)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB2-A3-(4)	H3a. Channel Sinuosity	1	1	1	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	4	4	4	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	n (f)				species	- Protection, plantings, and measures	
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	4	4	4	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	2	2	2	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	45	46	48	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
640	Hydrologic FCI = Subtotal / 100	0.45	0.46	0.48	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	6	7	8	(GCS) made from native material (rock or woody debris) where	from established buffer zones will enhance in-stream habitat and	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	WQ2. Water Clarity	3	3	3	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of	5	5	3	where appropriate		
Ephemeral	Aquatic Vegetation (h)	3	3	3	- Creation of riparian buffer zones around channel (minimum of 60' width		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	on each side)		
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	9	9	9	- Creation of protected natural area adjacent to riparian buffer zone		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9	- Monitoring and management		
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	38	47	55			
Restoration	= Water Quality / Biogeochemical FCI Subtotal / 80	0.48	0.59	0.69			
	HB1. Flow Regime	2	2	2			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-13	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	2	2	2	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Riogeochemical Eurotions: "HB" -	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / blogeochemical i unctions, Thb -	
	HB6. Channel Flow Status	2	2	2	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	1	1	1	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in heu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	45	55	63	 (h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively. 		
	Habitat FCI = Subtotal / 120	0.38	0.46	0.53			
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.31	1.51	1.70			
	TOTAL FCU = SAR Length (640) X Multiplication Factor (0.00125) X Total FCI	1.05	1.21	1.36	are 0.0000, 0.00010, 0.0020, and 0.00120, tesp	adavay.	

STREAM ASSESSMENT	SWAMPIM METRICS (a, b, c, d)	END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT			
REACH (SAR) INFORMATION		CONSTRUCTION	MONITORING	MATURITY	PERFORMED				
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel			
S2-TRIB2-A3-B4-(1)	H2a. Channel Condition/ Alteration	5	6	6	mititgation area	downcutting and improve stream			
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and			
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	8	8	8	prevent uncontrolled access (cattle,	floodplain connectivity (through			
S2-TRIB2-A3-B4-(1)	H3a. Channel Sinuosity	1	1	1	etc.) from outside conservation easement	increased overbank frequency)			
	H3b. Bottom Substrate Composition	1	1	1		- LWD will increase channel			
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	- Supplemental plantings of native trees, shrubs, and herbaceous	roughness and improve bank stability - Created pools will retain water			
	H3d. Channel Incision	9	9	9	species	 Protection, plantings, and measures to prevent uncontrolled access will 			
	H4a. Pools	0	0	0	 Use of large woody debris (LWD) or other native material for in-channel 	improve bank stability, filter runoff,			
	H4b. Channel Flow Status	0	0	0	structures	and enhance water quality			
Proposed SAR Length (LF):	Hydrologic Subtotal	35	36	37	- Adjustment of channel gradient by	- Woody debris, leaf litter, and			
49	Hydrologic FCI = Subtotal / 100	0.35	0.36	0.37	installing grade control structures	overhanging herbaceous vegetation			
10	WQ1a. Bank Stability (e)	8	8	8	(GCS) made from native material	from established buffer zones will			
Mitigation Zone:	WQ1b. Channel Bottom Bank Stability OR			0	(rock or woody debris) where	enhance in-stream habitat and			
Zone A	Channel Sediments or Substrate Composition (e, g)	8	8	8	appropriate - Creation of pools in combination with	biological productivity			
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations				
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	0	0	0	where appropriate - Creation of riparian buffer zones				
Multiplication Factor (i):	WQ4. Composition of Organic Matter	1	2	4	around channel (minimum of 60' width				
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	6	7	9	on each side) - Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management				
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	6	7	9					
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	5	9					
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	31	37	47					
Enhancement	Water Quality / Biogeochemical FCI = Subtotal / 80	0.39	0.46	0.59					
	HB1. Flow Regime	1	1	1					
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	1	2	3	Notes:				
A-13	HB3. Stream Bottom Substrate	2	2	2	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of			
	HB4. Pool Variability	1	2	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality (Diagonabamical Eurotiona: "HD" -			
	HB5. Sediment Deposition and Scouring	6	6	7	Habitat Functions.	Quality / Biogeochemical Functions, HB =			
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.				
	HB7. Channel Alteration	3	5	7	(d) FCU = Functional Capacity Unit.				
	HB8. Channel Sinuosity	1	1	1	(e) Score shown is the average of the left and r				
	HB9. Bank Stability (e)	8	8	8	(f) Instream bottom topography was globally us	ed in lieu of Manning's N as it allows for a			
	HB10. Vegetative Protection (e)	2	5	9	visual assessment of the stream reach. (g) Channel Bottom Bank Stability was used glo	obally instead of Channel Sediment/Substrate			
	HB11. Riparian Zone (e)	6	7	9	Composition because it more accurately repres				
	HB12. Riparian Habitat Condition	3	5	7	Ralph Hall project watershed.				
	Habitat Subtotal	34	44	57	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not				
	Habitat FCI = Subtotal / 120	0.28	0.37	0.48	provide an accurate representation of ephemera	al stream channel condition within the Lake			
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.02	1.19	1.44	Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams				
	TOTAL FCU = SAR Length (49) X Multiplication Factor (0.00125) X Total FCI	0.06	0.07	0.09	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	Jectively.			

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK				
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT			
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel			
S2-TRIB2-A4-(1)	H2a. Channel Condition/ Alteration	4	5	6	mititgation area	downcutting and improve stream			
	H2b. Channel Capacity to Flow Frequency	2	4	6	- Implementation of measures to	stability, sediment transport, and			
Baseline SAR Name(s):	H2c. Channel Bank Stability (e)	6	7	7	prevent uncontrolled access (cattle,	floodplain connectivity (through			
S2-TRIB2-A4-(1)	H3a. Channel Sinuosity	3	3	3	etc.) from outside conservation	increased overbank frequency)			
1	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel			
	H3c. Instream Bottom Topography OR Manning's	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water			
	n (f)			-	species	- Protection, plantings, and measures			
	H3d. Channel Incision	2	4	6	- Use of large woody debris (LWD) or	to prevent uncontrolled access will			
	H4a. Pools	0	0	0	other native material for in-channel	improve bank stability, filter runoff,			
	H4b. Channel Flow Status	0	0	0	structures	and enhance water quality			
Proposed SAR Length (LF):	Hydrologic Subtotal	21	27	33	- Adjustment of channel gradient by	 Woody debris, leaf litter, and 			
438	Hydrologic FCI = Subtotal / 100	0.21	0.27	0.33	installing grade control structures	overhanging herbaceous vegetation			
	WQ1a. Bank Stability <i>(e)</i>	6	7	7	(GCS) made from native material	from established buffer zones will			
	WQ1b. Channel Bottom Bank Stability OR			_	(rock or woody debris) where appropriate	enhance in-stream habitat and biological productivity			
	Channel Sediments or Substrate Composition (<i>e</i> , <i>g</i>)	6	6	7	- Creation of pools in combination with	biological productivity			
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations				
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	0	0	0	where appropriate - Creation of riparian buffer zones				
Multiplication Factor (i):	WQ4. Composition of Organic Matter	2	3	5	around channel (minimum of 60' width on each side)				
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	6	7	9	 Creation of protected natural area adjacent to riparian buffer zone Monitoring and management 				
	WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	6	7	9					
	WQ6b. Riparian Zone Vegetation Protection/Completeness <i>(e)</i>	4	6	9					
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	30	36	46					
Enhancement	Water Quality / Biogeochemical FCI = Subtotal / 80	0.38	0.45	0.58					
1	HB1. Flow Regime	1	1	1					
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	1	2	3	Notes:				
A-16	HB3. Stream Bottom Substrate	2	2	2	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of			
1	HB4. Pool Variability	1	2	2	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water G	Quality / Biogeochemical Eurotions: "HB" -			
1	HB5. Sediment Deposition and Scouring	6	6	6	Habitat Functions.	quality / Diogeochemical runctions, The -			
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.				
1	HB7. Channel Alteration	2	5	7	(d) FCU = Functional Capacity Unit.				
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r				
1	HB9. Bank Stability <i>(e)</i>	6	7	7	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a			
	HB10. Vegetative Protection (e)	2	5	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate			
	HB11. Riparian Zone <i>(e)</i>	6	7	9	Composition because it more accurately repres				
	HB12. Riparian Habitat Condition	6	6	7	Ralph Hall project watershed.				
1	Habitat Subtotal	36	46	56	 (h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively. 				
	Habitat FCI = Subtotal / 120	0.30	0.38	0.47					
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	0.89	1.10	1.38					
	TOTAL FCU = SAR Length (438) X Multiplication Factor (0.00125) X Total FCI	0.49	0.60	0.76	are 6.0000, 6.00010, 6.0020, and 6.00120, fest				

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB2-A4-(2)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB2-A4-(2)	H3a. Channel Sinuosity	3	3	3	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	H3d. Channel Incision	8	8	8	species	 Protection, plantings, and measures 	
	H4a. Pools	0	0	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4b. Channel Flow Status	0	0	0	other native material for in-channel	improve bank stability, filter runoff,	
		-	-	-	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	37	38	40	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
334	Hydrologic FCI = Subtotal / 100	0.37	0.38	0.40	installing grade control structures (GCS) made from native material	overhanging herbaceous vegetation from established buffer zones will	
Mitingtian Zanas	WQ1a. Bank Stability (e)	6	7	8	(rock or woody debris) where	enhance in-stream habitat and	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (h)	0	0	0	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width		
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	on each side) - Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	41	49			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.51	0.61			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-16	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Piagoochomical Eurotions: "UP" -	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Biogeochemical Functions, HB -	
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	obally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	45	55	63	(h) Nutrient Enrichment was used globally for s		
	Habitat FCI = Subtotal / 120	0.38	0.46	0.53	provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams		
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.15	1.35	1.54			
	TOTAL FCU = SAR Length (334) X Multiplication Factor (0.00125) X Total FCI	0.48	0.56	0.64	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	Jectively.	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB2-B2-(1)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB2-B2-(1)	H3a. Channel Sinuosity	3	3	3	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	n (f)				species	- Protection, plantings, and measures	
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	0	0	0	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	0	0	0	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	37	38	40	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
359	Hydrologic FCI = Subtotal / 100	0.37	0.38	0.40	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	6	7	8	(GCS) made from native material	from established buffer zones will enhance in-stream habitat and	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	(rock or woody debris) where appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of	0	0	0	where appropriate - Creation of riparian buffer zones		
	Aquatic Vegetation (h)			-	around channel (minimum of 60' width		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	3	4	on each side)		
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	9	9	9	- Creation of protected natural area adjacent to riparian buffer zone		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9	- Monitoring and management		
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	39	46			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.49	0.58			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-16	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Riogeochemical Eurotions: "HB" -	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Diogeochemical runctions, Thb -	
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	45	55	63	 (h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively. 		
	Habitat FCI = Subtotal / 120	0.38	0.46	0.53			
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.15	1.33	1.51			
	TOTAL FCU = SAR Length (359) X Multiplication Factor (0.00125) X Total FCI	0.52	0.60	0.68	are 0.0030, 0.00313, 0.0023, and 0.00123, lesp	Journey.	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB2-B3-(1)	H2a. Channel Condition/ Alteration	2	4	6	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	2	4	7	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	2	4	7	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB2-B3-(1)	H3a. Channel Sinuosity	1	1	1	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	n <i>(f)</i>			-	species	- Protection, plantings, and measures	
	H3d. Channel Incision	2	4	7	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	0	0	0	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	0	0	0	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	13	21	33	- Adjustment of channel gradient by	 Woody debris, leaf litter, and 	
139	Hydrologic FCI = Subtotal / 100	0.13	0.21	0.33	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	2	4	7	(GCS) made from native material	from established buffer zones will	
	WQ1b. Channel Bottom Bank Stability OR				(rock or woody debris) where	enhance in-stream habitat and	
Zone A	Channel Sediments or Substrate Composition (e,	2	4	6	appropriate	biological productivity	
	g)				 Creation of pools in combination with LWD and GCS and other locations 		
	WQ2. Water Clarity	0	0	0	where appropriate		
Ephemeral	WQ3. Nutrient Enrichment OR Presence of	0	0	0	- Creation of riparian buffer zones		
	Aquatic Vegetation (h)			-	around channel (minimum of 60' width		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	2	3	4	on each side)		
0.00125	WQ5. Land Use Pattern Beyond Immediate	6	7	9	- Creation of protected natural area		
	Riparian Zone <i>(e)</i>	0	,	9	adjacent to riparian buffer zone		
	WQ6a. Riparian Zone Width (from stream edge	6	7	9	- Monitoring and management		
	to field) <i>(e)</i>	0	1	3			
	WQ6b. Riparian Zone Vegetation	3	6	9			
	Protection/Completeness (e)		-	-			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	21	31	44			
Enhancement	Water Quality / Biogeochemical FCI = Subtotal / 80	0.26	0.39	0.55			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	1	2	3	Notes:		
A-16	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	1	2	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Eurotions: "HB" -	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Diogeochemical runctions, ThD =	
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	2	4	6	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	1	1	1	(e) Score shown is the average of the left and r		
	HB9. Bank Stability (e)	2	4	7	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	5	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	6	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	6	6	7	Ralph Hall project watershed.		
	Habitat Subtotal	33	43	57	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake		
	Habitat FCI = Subtotal / 120	0.28	0.36	0.48	provide an accurate representation of ephemera Ralph Hall project watershed.	ai stream cnannei condition within the Lake	
	TOTAL ECI - Hydrologia ECI - Water Ovelity /				(i) The Multiplication Factor is determined by the	e stream's flow regime; the multiplication	
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	0.67	0.96	1.36	factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Strea		
			1	l 	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	Dectively.	
	TOTAL FCU = SAR Length (139) X	0.12	0.17	0.24			
	Multiplication Factor (0.00125) X Total FCI	=					

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT	
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB2-B4-(1)	H2a. Channel Condition/ Alteration	5	6	7	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	7	5	7	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	5	6	7	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB2-B4-(1)	H3a. Channel Sinuosity	1	1	1	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	5	5	5	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	H3d. Channel Incision	7	6	7	species	- Protection, plantings, and measures	
	H4a. Pools	0	0	7	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4b. Channel Flow Status	0	0	0	other native material for in-channel	improve bank stability, filter runoff,	
		-	-	÷	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	33	32	38	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
234	Hydrologic FCI = Subtotal / 100 WQ1a. Bank Stability (e)	0.33 5	0.32	0.38	installing grade control structures (GCS) made from native material	overhanging herbaceous vegetation from established buffer zones will	
Mitingtian Zanas		5	6	7	(rock or woody debris) where	enhance in-stream habitat and	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	6	7	appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	0	0	0	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	2	3	4	around channel (minimum of 60' width		
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	5	7	9	on each side) - Creation of protected natural area		
	WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	5	7	9	adjacent to riparian buffer zone - Monitoring and management		
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	5	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	26	34	45			
Enhancement	Water Quality / Biogeochemical FCI = Subtotal / 80	0.33	0.43	0.56			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	2	3	3	Notes:		
A-13	HB3. Stream Bottom Substrate	2	2	2	(a) Refer to SWAMPIM Assessment Protocol D	Documentation (included in Appendix C of	
	HB4. Pool Variability	2	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Piagaaahamiaal Eurotiona: "UP" -	
	HB5. Sediment Deposition and Scouring	2	4	6	Habitat Functions.	quality / Biogeochemical Functions, HB -	
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	2	4	6	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	1	1	1	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	5	6	7	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	5	9	(g) Channel Bottom Bank Stability was used glo	obally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	2	4	7	Ralph Hall project watershed.		
	Habitat Subtotal	26	40	54	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams		
	Habitat FCI = Subtotal / 120	0.22	0.33	0.45			
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	0.88	1.08	1.39			
	TOTAL FCU = SAR Length (234) X Multiplication Factor (0.00125) X Total FCI	0.26	0.32	0.41	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	Journoy.	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT	
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB2-B4-(2)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB2-B4-(2)	H3a. Channel Sinuosity	3	3	3	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	2	2	2	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's n (f)	3	3	4	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	H3d. Channel Incision	8	8	8	species	- Protection, plantings, and measures	
	H4a. Pools	0	0	0	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4b. Channel Flow Status	0	0	0	other native material for in-channel structures	improve bank stability, filter runoff, and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	39	40	42	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
204	Hydrologic FCI = Subtotal / 100	0.39	0.40	0.42	installing grade control structures	overhanging herbaceous vegetation	
204	WQ1a. Bank Stability (e)	6	7	8	(GCS) made from native material	from established buffer zones will	
Mitigation Zone:	WQ1b. Channel Bottom Bank Stability OR	0	,	0	(rock or woody debris) where	enhance in-stream habitat and	
Zone A	Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	0	0	0	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width		
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	on each side) - Creation of protected natural area		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9	adjacent to riparian buffer zone - Monitoring and management		
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	41	49			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.51	0.61			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-13	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Riagonahamical Eurotiana: "UP" -	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Diogeochemical Functions, ThD =	
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in heu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	ballv instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	45	55	63	(h) Nutrient Enrichment was used globally for s		
	Habitat FCI = Subtotal / 120	0.38	0.46	0.53	provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams		
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.17	1.37	1.56			
	TOTAL FCU = SAR Length (204) X Multiplication Factor (0.00125) X Total FCI	0.30	0.35	0.40	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	iocuvoiy.	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB3-(1)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB3-(1)	3-(1) H3a. Channel Sinuosity 7	7	7	7	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	H3d. Channel Incision	8	8	8	species	- Protection, plantings, and measures	
	H4a. Pools	0	0	0	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Fools H4b. Channel Flow Status	0	0	0	other native material for in-channel	improve bank stability, filter runoff,	
	Hydrologic Subtotal	41	42	44	structures	and enhance water quality	
Proposed SAR Length (LF):	, , ,				- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
255	Hydrologic FCI = Subtotal / 100 WQ1a. Bank Stability (e)	0.41 6	0.42	0.44	installing grade control structures (GCS) made from native material	overhanging herbaceous vegetation from established buffer zones will	
Mitinatian Zanas		6	7	8	(rock or woody debris) where	enhance in-stream habitat and	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (h)	0	0	0	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	3	4	around channel (minimum of 60' width		
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	on each side) - Creation of protected natural area		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9	adjacent to riparian buffer zone - Monitoring and management		
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	39	46			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.49	0.58			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-15	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Violity / Diagoophamical Eurotiona: "HB" -	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Biogeochemical Functions, HB -	
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	45	55	63	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not		
	Habitat FCI = Subtotal / 120	0.38	0.46	0.53	provide an accurate representation of ephemera	al stream channel condition within the Lake	
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.19	1.37	1.55	Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams		
	TOTAL FCU = SAR Length (255) X Multiplication Factor (0.00125) X Total FCI	0.38	0.44	0.49	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	ecuvery.	

STREAM ASSESSMENT	SWAMPIM METRICS (a, b, c, d)	END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT	
REACH (SAR) INFORMATION	SWAMPIN METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB3-(2)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB3-(2)	H3a. Channel Sinuosity	6	6	6	etc.) from outside conservation easement	increased overbank frequency) - LWD will increase channel	
	H3b. Bottom Substrate Composition	1	1	1	- Supplemental plantings of native	roughness and improve bank stability	
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	trees, shrubs, and herbaceous	- Created pools will retain water - Protection, plantings, and measures	
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	4	4	4	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	1	1	1	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	46	47	49	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
558	Hydrologic FCI = Subtotal / 100	0.46	0.47	0.49	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	6	7	8	(GCS) made from native material	from established buffer zones will	
	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e,	7	7	7	(rock or woody debris) where appropriate - Creation of pools in combination with	enhance in-stream habitat and biological productivity	
Stream Classification:	<i>g)</i> WQ2. Water Clarity	1	1	1	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of	1	1	1	where appropriate		
'	Aquatic Vegetation (h)	1	1	1	- Creation of riparian buffer zones around channel (minimum of 60' width		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	3	4	on each side)		
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	- Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	34	41	48			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.43	0.51	0.60			
	HB1. Flow Regime	2	2	2			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-15	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water G	Quality / Biogeochemical Functions: "HB" =	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	addity , Biogeochermour , anotione, The	
	HB6. Channel Flow Status	1	1	1	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and n (f) Instream bottom topography was globally us		
	HB9. Bank Stability <i>(e)</i>	6	7	8	visual assessment of the stream reach.	ed in neu or manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres	ents the channel condition within the Lake	
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	47	57	65	(h) Nutrient Enrichment was used globally for so provide an accurate representation of ephemera		
	Habitat FCI = Subtotal / 120	0.39	0.48	0.54	Ralph Hall project watershed.		
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.28	1.46	1.63	(i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Strean are 0.0038, 0.00315, 0.0025, and 0.00125, respectively.		
	TOTAL FCU = SAR Length (558) X Multiplication Factor (0.00125) X Total FCI	0.89	1.02	1.14	,		

S2-TRIB3-(3) H2 Baseline SAR Name(s): S2-TRIB3-(3) H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2	SWAMPIM METRICS (<i>a</i> , <i>b</i> , <i>c</i> , <i>d</i>) 11. Flow Regime and Groundwater Interaction 12a. Channel Condition/ Alteration 12b. Channel Capacity to Flow Frequency 12c. Channel Bank Stability (<i>e</i>) 13a. Channel Sinuosity 13b. Bottom Substrate Composition 13c. Instream Bottom Topography OR Manning's	CONSTRUCTION 2 8 6 5	MONITORING 2 8 8	MATURITY 2 8	PERFORMED - Protection within large contiguous	- GCS will reduce channel	
S2-TRIB3-(3) H2 Baseline SAR Name(s): S2-TRIB3-(3) H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2	I2a. Channel Condition/ Alteration I2b. Channel Capacity to Flow Frequency I2c. Channel Bank Stability (e) I3a. Channel Sinuosity I3b. Bottom Substrate Composition	8 8 6	8		- Protection within large contiguous	 GCS will reduce channel 	
Baseline SAR Name(s): H2 S2-TRIB3-(3) H3 H3	I2b. Channel Capacity to Flow Frequency I2c. Channel Bank Stability (e) I3a. Channel Sinuosity I3b. Bottom Substrate Composition	8		Q			
Baseline SAR Name(s): H2 S2-TRIB3-(3) H3 H3	I2c. Channel Bank Stability (e) I3a. Channel Sinuosity I3b. Bottom Substrate Composition	6	8	0	mititgation area	downcutting and improve stream	
S2-TRIB3-(3)	3a. Channel Sinuosity 3b. Bottom Substrate Composition		0	8	- Implementation of measures to	stability, sediment transport, and	
н	3b. Bottom Substrate Composition	5	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
		0	5	5	etc.) from outside conservation	increased overbank frequency)	
H	3c Instream Bottom Topography OR Manning's	1	1	1	easement	- LWD will increase channel	
	(f)	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	13d. Channel Incision	8	8	8	species	- Protection, plantings, and measures	
	4a. Pools	4	4	4	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	44. Fools 4b. Channel Flow Status	1	4	4	other native material for in-channel	improve bank stability, filter runoff,	
Proposed SAR Length (LF):	Hydrologic Subtotal	45	46	48	structures - Adjustment of channel gradient by	and enhance water quality	
295	Hydrologic FCI = Subtotal / 100	45 0.45	0.46	40 0.48	installing grade control structures	 Woody debris, leaf litter, and overhanging herbaceous vegetation 	
	VQ1a. Bank Stability (e)	<u> </u>	0.40 7	0.40 8	(GCS) made from native material	from established buffer zones will	
		0	'	0	(rock or woody debris) where	enhance in-stream habitat and	
0	VQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition <i>(e,</i>)	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
	vQ2. Water Clarity	1	1	1	LWD and GCS and other locations		
Ephemeral W	VQ3. Nutrient Enrichment OR Presence of quatic Vegetation (h)	1	1	1	where appropriate - Creation of riparian buffer zones		
	VQ4. Composition of Organic Matter	3	3	4	around channel (minimum of 60' width		
0.00125 W	VQ5. Land Use Pattern Beyond Immediate tiparian Zone (e)	9	9	9	on each side) - Creation of protected natural area		
W	VQ6a. Riparian Zone Width (from stream edge o field) <i>(e)</i>	5	7	9	adjacent to riparian buffer zone - Monitoring and management		
	VQ6b. Riparian Zone Vegetation rotection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	34	41	48			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.43	0.51	0.60			
H	IB1. Flow Regime	2	2	2			
Reference Figure: HI	B2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-15 HI	B3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
H	B4. Pool Variability	4	4	4	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water G	Velity / Biogeochemical Eurotiones "UB" -	
H	B5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Biogeochemical Functions, HB -	
H	B6. Channel Flow Status	1	1	1	(c) FCI = Functional Condition Index.		
H	B7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
H	B8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and ri		
H	B9. Bank Stability (e)	6	7	8	(f) Instream bottom topography was globally use visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
H	B10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
H	B11. Riparian Zone (e)	5	7	9	Composition because it more accurately represe		
	B12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	48	58	66	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake		
	Habitat FCI = Subtotal / 120	0.40	0.48	0.55	provide an accurate representation of ephemera Ralph Hall project watershed.	al stream channel condition within the Lake	
Т	FOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.28	1.45	1.63	 (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams 		
	TOTAL FCU = SAR Length (295) X Multiplication Factor (0.00125) X Total FCI	0.47	0.53	0.60	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	ecuvery.	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT			
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT			
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel			
S2-TRIB3-(4)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream			
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and			
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through			
S2-TRIB3-(4)	H3a. Channel Sinuosity	6	6	6	etc.) from outside conservation	increased overbank frequency)			
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel			
	H3c. Instream Bottom Topography OR Manning's	3	3	4	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water			
	n (f)	0	0		species	- Protection, plantings, and measures			
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will			
	H4a. Pools H4b. Channel Flow Status	4	4	4	other native material for in-channel	improve bank stability, filter runoff,			
				1	structures	and enhance water quality			
Proposed SAR Length (LF):	Hydrologic Subtotal	47	48	50	- Adjustment of channel gradient by	- Woody debris, leaf litter, and			
1,613	Hydrologic FCI = Subtotal / 100 WQ1a. Bank Stability (e)	0.47 6	0.48	0.50	installing grade control structures (GCS) made from native material	overhanging herbaceous vegetation from established buffer zones will			
Mitingtian Zanas		6	7	8	(rock or woody debris) where	enhance in-stream habitat and			
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity			
Stream Classification:	WQ2. Water Clarity	1	1	1	LWD and GCS and other locations				
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (h)	1	1	1	where appropriate - Creation of riparian buffer zones				
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width				
0.00125	WQ5. Land Use Pattern Beyond Immediate	9	9	9	on each side) - Creation of protected natural area				
	Riparian Zone <i>(e)</i> WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	5	7	9	adjacent to riparian buffer zone - Monitoring and management				
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9					
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	34	43	51					
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.43	0.54	0.64					
	HB1. Flow Regime	2	2	2					
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:				
A-12	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of			
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Piagoochomical Eurotions: "UP" -			
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Biogeochemical Functions, HB -			
	HB6. Channel Flow Status	1	1	1	(c) FCI = Functional Condition Index.				
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.				
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r				
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a			
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate			
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres				
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.				
	Habitat Subtotal	47	57	65	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake				
	Habitat FCI = Subtotal / 120	0.39	0.48	0.54	Provide an accurate representation of epnemera Ralph Hall project watershed.	ai stream channel condition within the Lake			
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.29	1.50	1.68	Raiph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively.				
	TOTAL FCU = SAR Length (1613) X Multiplication Factor (0.00125) X Total FCI	2.60	3.02	3.39	are 0.0000, 0.00010, 0.0020, and 0.00120, lesp	ocuvory.			

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT			
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT			
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel			
S2-TRIB3-(5)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream			
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and			
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through			
2-TRIB3-(5)	H3a. Channel Sinuosity	4	4	4	etc.) from outside conservation	increased overbank frequency)			
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel			
	H3c. Instream Bottom Topography OR Manning's	3	3	4	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water			
	n (f)				species	- Protection, plantings, and measures			
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will			
	H4a. Pools	4	4	4	other native material for in-channel	improve bank stability, filter runoff,			
	H4b. Channel Flow Status	1	1	1	structures	and enhance water quality			
Proposed SAR Length (LF):	Hydrologic Subtotal	45	46	48	- Adjustment of channel gradient by	- Woody debris, leaf litter, and			
707	Hydrologic FCI = Subtotal / 100	0.45	0.46	0.48	installing grade control structures	overhanging herbaceous vegetation			
	WQ1a. Bank Stability <i>(e)</i>	6	7	8	(GCS) made from native material	from established buffer zones will enhance in-stream habitat and			
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	(rock or woody debris) where appropriate - Creation of pools in combination with	biological productivity			
Stream Classification:	9/ WQ2. Water Clarity	1	1	1	LWD and GCS and other locations				
	WQ3. Nutrient Enrichment OR Presence of	I	I	1	where appropriate				
Ephemeral	Aquatic Vegetation (h)	1	1	1	- Creation of riparian buffer zones around channel (minimum of 60' width				
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	on each side)				
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	- Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management				
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9					
	WQ6b. Riparian Zone Vegetation Protection/Completeness <i>(e)</i>	2	6	9					
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	34	43	51					
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.43	0.54	0.64					
	HB1. Flow Regime	2	2	2					
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:				
A-12	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of			
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water G	Quality / Biogeochemical Eurotions: "HB" -			
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Diogeochemical runctions, The -			
	HB6. Channel Flow Status	1	1	1	(c) FCI = Functional Condition Index.				
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.				
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r				
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a			
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate			
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres				
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.				
	Habitat Subtotal	47	57	65	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake				
	Habitat FCI = Subtotal / 120	0.39	0.48	0.54	provide an accurate representation of ephemera Ralph Hall project watershed.	ai sueam channei condition within the lake			
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.27	1.48	1.66	Raiph Hail project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively.				
	TOTAL FCU = SAR Length (707) X Multiplication Factor (0.00125) X Total FCI	1.12	1.31	1.47	are 0.0000, 0.00010, 0.0020, and 0.00120, lesp	oourory.			

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT				
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT				
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel				
S2-TRIB3-(6)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream				
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and				
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through				
S2-TRIB3-(6)	H3a. Channel Sinuosity	5	5	5	etc.) from outside conservation	increased overbank frequency)				
	H3b. Bottom Substrate Composition	2	2	2	easement	- LWD will increase channel				
	H3c. Instream Bottom Topography OR Manning's n (f)	4	4	5	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water				
	H3d. Channel Incision	8	8	8	species	- Protection, plantings, and measures				
	H4a. Pools	4	4	4	- Use of large woody debris (LWD) or	to prevent uncontrolled access will				
	H4b. Channel Flow Status	2	2	2	other native material for in-channel structures	improve bank stability, filter runoff,				
Proposed SAR Length (LF):	Hydrologic Subtotal	49	50	52		and enhance water quality - Woody debris, leaf litter, and				
1,191	Hydrologic FCI = Subtotal / 100	49 0.49	0.50	0.52	- Adjustment of channel gradient by installing grade control structures	overhanging herbaceous vegetation				
1,191	WQ1a. Bank Stability (e)	6	0.30 7	8	(GCS) made from native material	from established buffer zones will				
Mitigation Zone:		0	'	0	(rock or woody debris) where	enhance in-stream habitat and				
Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity				
Stream Classification:	WQ2. Water Clarity	2	2	2	LWD and GCS and other locations					
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	1	1	1	where appropriate - Creation of riparian buffer zones					
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width					
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	on each side) - Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management					
	WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	5	7	9						
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9						
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	35	44	52						
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.44	0.55	0.65						
	HB1. Flow Regime	2	2	2						
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:					
A-12	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of				
	HB4. Pool Variability	4	4	4	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water G	Violity / Diagoophamical Eurotiona: "UP" -				
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Biogeochemical Functions, HB =				
	HB6. Channel Flow Status	2	2	2	(c) FCI = Functional Condition Index.					
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.					
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r					
	HB9. Bank Stability (e)	6	7	8	(f) Instream bottom topography was globally us	ed in lieu of Manning's N as it allows for a				
	HB10. Vegetative Protection (e)	2	6	9	visual assessment of the stream reach. (g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate				
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres					
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.					
	Habitat Subtotal	49	59	67	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams					
	Habitat FCI = Subtotal / 120	0.41	0.49	0.56						
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.34	1.54	1.73						
	TOTAL FCU = SAR Length (1191) X Multiplication Factor (0.00125) X Total FCI	1.99	2.29	2.58	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	ecuvery.				

STREAM ASSESSMENT	SWAMPIM METRICS (a, b, c, d)	END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT	
REACH (SAR) INFORMATION		CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel	
- ()	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB3-(7)	H3a. Channel Sinuosity	7	7	7	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's n (f)	4	4	5	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	H3d. Channel Incision	8	8	8	species	- Protection, plantings, and measures	
	H4a. Pools	<u> </u>	<u> </u>	-	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools H4b. Channel Flow Status	2	2	4	other native material for in-channel	improve bank stability, filter runoff,	
				2	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	50	51	53	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
1,089	Hydrologic FCI = Subtotal / 100	0.50	0.51	0.53	installing grade control structures (GCS) made from native material	overhanging herbaceous vegetation from established buffer zones will	
	WQ1a. Bank Stability (e)	6	7	8	(rock or woody debris) where	enhance in-stream habitat and	
Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
	WQ2. Water Clarity	1	1	1	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of	2	2	2	where appropriate - Creation of riparian buffer zones		
	Aquatic Vegetation (h)				around channel (minimum of 60' width		
	WQ4. Composition of Organic Matter	3	5	7	on each side)		
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	- Creation of protected natural area adjacent to riparian buffer zone		
	WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	5	7	9	- Monitoring and management		
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	35	44	52			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.44	0.55	0.65			
	HB1. Flow Regime	2	2	2			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-12	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Eurotions: "HB" -	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Diogeochemical Functions, ThD =	
	HB6. Channel Flow Status	2	2	2	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	48	58	66	(h) Nutrient Enrichment was used globally for s		
	Habitat FCI = Subtotal / 120	0.40	0.48	0.55	provide an accurate representation of ephemera Ralph Hall project watershed.	al stream channel condition within the Lake	
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.34	1.54	1.73	Raiph Hail project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively.		
	TOTAL FCU = SAR Length (1089) X Multiplication Factor (0.00125) X Total FCI	1.82	2.10	2.35			

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT			
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT			
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel			
S2-TRIB3-(8)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream			
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and			
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through			
2-TRIB3-(8)	H3a. Channel Sinuosity	6	6	6	etc.) from outside conservation easement	increased overbank frequency) - LWD will increase channel			
	H3b. Bottom Substrate Composition	1	1	1	- Supplemental plantings of native	roughness and improve bank stability			
	H3c. Instream Bottom Topography OR Manning's n (f)	4	4	5	trees, shrubs, and herbaceous	 Created pools will retain water Protection, plantings, and measures 			
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will			
	H4a. Pools	4	4	4	other native material for in-channel	improve bank stability, filter runoff,			
	H4b. Channel Flow Status	1	1	1	structures	and enhance water quality			
Proposed SAR Length (LF):	Hydrologic Subtotal	48	49	51	- Adjustment of channel gradient by	- Woody debris, leaf litter, and			
2,018	Hydrologic FCI = Subtotal / 100	0.48	0.49	0.51	installing grade control structures	overhanging herbaceous vegetation			
	WQ1a. Bank Stability <i>(e)</i>	6	7	8	(GCS) made from native material	from established buffer zones will			
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	(rock or woody debris) where appropriate - Creation of pools in combination with	enhance in-stream habitat and biological productivity			
Stream Classification:	WQ2. Water Clarity	1	1	1	LWD and GCS and other locations				
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	1	1	1	where appropriate - Creation of riparian buffer zones				
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width on each side)				
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	9	9	9	Oreation of protected natural area adjacent to riparian buffer zone Monitoring and management				
	WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	5	7	9					
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9					
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	34	43	51					
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.43	0.54	0.64					
	HB1. Flow Regime	2	2	2					
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:				
A-10	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D Mitigation Plan) for scoring methodology.	ocumentation (included in Appendix C of			
	HB4. Pool Variability	3	3	3	(b) "H" = Hydrologic Functions; "WQ" = Water G	Quality / Biogeochemical Functions: "HB" =			
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.				
	HB6. Channel Flow Status	1	1	1	(c) FCI = Functional Condition Index.				
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit. (e) Score shown is the average of the left and n	ight hank agorop			
	HB8. Channel Sinuosity	3	3	3	(f) Instream bottom topography was globally us				
	HB9. Bank Stability <i>(e)</i>	6	7	8	visual assessment of the stream reach.				
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo				
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres	ents the channel condition within the Lake			
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed. (h) Nutrient Enrichment was used globally for si	coring because Aquatic Vegetation does not			
	Habitat Subtotal Habitat FCI = Subtotal / 120	47	57	65 0.54	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake				
	Habitat FGI = Subtotal / 120	0.39	0.48	0.54	Ralph Hall project watershed.				
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.30	1.51	1.69	(i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively.				
	TOTAL FCU = SAR Length (2018) X Multiplication Factor (0.00125) X Total FCI	3.28	3.81	4.26	· · · · · · · · · · · · · · · · · · ·				

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB3-(9)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to	stability, sediment transport, and	
	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
2-TRIB3-(9)	H3a. Channel Sinuosity	7	7	7	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's	4	4	5	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	n (f)	0	0		species	- Protection, plantings, and measures	
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools H4b. Channel Flow Status	0	0	0	other native material for in-channel	improve bank stability, filter runoff,	
		-	-	0	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	43	44	46	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
1,935	Hydrologic FCI = Subtotal / 100 WQ1a. Bank Stability (e)	0.43 6	0.44	0.46	installing grade control structures (GCS) made from native material	overhanging herbaceous vegetation from established buffer zones will	
Mitinatian Zanas		6	7	8	(rock or woody debris) where	enhance in-stream habitat and	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	0	0	0	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width		
	WQ5. Land Use Pattern Beyond Immediate	5	5	1	on each side)		
	Riparian Zone <i>(e)</i>	9	9	9	- Creation of protected natural area adjacent to riparian buffer zone		
	WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	5	7	9	- Monitoring and management		
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	41	49			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.51	0.61			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-10	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Functions: "HB" =	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.		
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	4	4	4	(e) Score shown is the average of the left and r (f) Instream bottom topography was globally us		
	HB9. Bank Stability <i>(e)</i>	6	7	8	visual assessment of the stream reach.		
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bbally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres	ents the channel condition within the Lake	
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	46	56	64	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake		
	Habitat FCI = Subtotal / 120	0.38	0.47	0.53	Ralph Hall project watershed.	a sa sam shanner condition within the Lake	
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.21	1.42	1.60	(i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams are 0.0038, 0.00315, 0.0025, and 0.00125, respectively.		
	TOTAL FCU = SAR Length (1935) X Multiplication Factor (0.00125) X Total FCI	2.93	3.43	3.87			

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB3-(10)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to stability, sediment transport, and		
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	8	8	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB3-(10)	H3a. Channel Sinuosity	8	8	8	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	2	2	2	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's	4	4	5	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	n (f)		-			- Protection, plantings, and measures	
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	4	4	4	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	6	6	6	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	58	58	59	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
1,473	Hydrologic FCI = Subtotal / 100	0.58	0.58	0.59	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	8	8	8	(GCS) made from native material	from established buffer zones will enhance in-stream habitat and	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e,	8	8	8	(rock or woody debris) where appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	<i>g)</i> WQ2. Water Clarity	4	4	4	LWD and GCS and other locations		
	WQ3. Nutrient Enrichment OR Presence of	4	4	4	where appropriate		
	Aquatic Vegetation (h)	4	4	4	- Creation of riparian buffer zones around channel (minimum of 60' width		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	5	6	7	on each side)		
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	5	7	9	 Creation of protected natural area adjacent to riparian buffer zone Monitoring and management 		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness <i>(e)</i>	5	7	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	44	51	58			
Enhancement	Water Quality / Biogeochemical FCI = Subtotal / 80	0.55	0.64	0.73			
	HB1. Flow Regime	2	2	2			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-6	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Piazooohomical Eurotions: "UP" -	
	HB5. Sediment Deposition and Scouring	6	7	7	Habitat Functions.	quality / Diogeochemical runctions, ThD =	
	HB6. Channel Flow Status	6	6	6	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	6	7	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	5	5	5	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	8	8	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	5	7	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately represents the channel condition within the Lake		
	HB12. Riparian Habitat Condition	4	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	58	65	72	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake		
	Habitat FCI = Subtotal / 120	0.48	0.54	0.60	Provide an accurate representation of ephemera Ralph Hall project watershed.	ai stream channel condition within the Lake	
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.61	1.76	1.92	(i) The Multiplication Factor is determined by the factors for Perennial, Intermittent with Perennia are 0.0038, 0.00315, 0.0025, and 0.00125, resp	Pools, Intermittent, and Ephemeral Streams	
	TOTAL FCU = SAR Length (1473) X Multiplication Factor (0.00125) X Total FCI	2.96	3.24	3.54	are 0.0030, 0.00313, 0.0023, and 0.00123, lesp	ocurciy.	

		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB3-A4-(1)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to stability, sediment transport, and		
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
N/A	H3a. Channel Sinuosity	8	8	8	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	4	4	4	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's n (f)	4	4	5	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	H3d. Channel Incision	8	8	8	species	- Protection, plantings, and measures	
	H4a. Pools	4	4	4	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Fools H4b. Channel Flow Status	1	1	4	other native material for in-channel	improve bank stability, filter runoff,	
Proposed SAR Length (LF):	Hydrologic Subtotal	53	54	56	structures - Adjustment of channel gradient by	and enhance water quality	
2,824	Hydrologic FCI = Subtotal / 100	0.53	0.54	0.56	installing grade control structures	 Woody debris, leaf litter, and overhanging herbaceous vegetation 	
	WQ1a. Bank Stability (e)	6	0.34 7	8	(GCS) made from native material	from established buffer zones will	
		0	/	0	(rock or woody debris) where	enhance in-stream habitat and	
Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	8	8	8	appropriate - Creation of pools in combination with	biological productivity	
	WQ2. Water Clarity	2	2	2	LWD and GCS and other locations		
Ephemeral	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	2	2	2	where appropriate - Creation of riparian buffer zones		
	WQ4. Composition of Organic Matter	4	7	8	around channel (minimum of 60' width		
0.00125	WQ5. Land Use Pattern Beyond Immediate	9	9	9	on each side) - Creation of protected natural area		
	Riparian Zone (e)	-	-	-	adjacent to riparian buffer zone		
	WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	5	7	9	- Monitoring and management		
	WQ6b. Riparian Zone Vegetation Protection/Completeness <i>(e)</i>	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	38	48	55			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.48	0.60	0.69			
	HB1. Flow Regime	2	2	2			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
	HB3. Stream Bottom Substrate	6	6	6	(a) Refer to SWAMPIM Assessment Protocol D	Oocumentation (included in Appendix C of	
	HB4. Pool Variability	4	4	4	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water G	Quality / Piezooahomiaal Eurotiana: "UP" -	
	HB5. Sediment Deposition and Scouring	8	8	8	Habitat Functions.	quality / Biogeochemical Functions, HB =	
	HB6. Channel Flow Status	1	1	1	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	4	4	4	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	obally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed. (h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams		
	Habitat Subtotal	52	62	70			
	Habitat FCI = Subtotal / 120	0.43	0.52	0.58			
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.44	1.66	1.83			
	TOTAL FCU = SAR Length (2824) X Multiplication Factor (0.00125) X Total FCI	5.08	5.86	6.46	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	σοιινσιγ.	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB3-A5-(1)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream stability, sediment transport, and	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to		
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,		
S2-TRIB3-A5-(1)	H3a. Channel Sinuosity	3	3	3	etc.) from outside conservation easement	increased overbank frequency)	
	H3b. Bottom Substrate Composition	1	1	1	- Supplemental plantings of native	 LWD will increase channel roughness and improve bank stability 	
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	trees, shrubs, and herbaceous	- Created pools will retain water	
	H3d. Channel Incision	8	8	8	species - Use of large woody debris (LWD) or	 Protection, plantings, and measures to prevent uncontrolled access will 	
	H4a. Pools	0	0	0	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	0	0	0	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	37	38	40	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
528	Hydrologic FCI = Subtotal / 100	0.37	0.38	0.40		overhanging herbaceous vegetation	
	WQ1a. Bank Stability (e)	6	7	8	(GCS) made from native material	from established buffer zones will	
	WQ1b. Channel Bottom Bank Stability OR	-		0	(rock or woody debris) where	enhance in-stream habitat and	
Zone A	Channel Sediments or Substrate Composition (e, g)	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
Ephemeral	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	0	0	0	where appropriate - Creation of riparian buffer zones		
	WQ4. Composition of Organic Matter	3	3	4	around channel (minimum of 60' width		
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	on each side) - Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	39	46			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.49	0.58			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-12	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	3	3	3	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Violity / Biogeophemical Eurotiane: "HP" -	
	HB5. Sediment Deposition and Scouring	5	5	5	Habitat Functions.	quality / Biogeochemical Functions, HB -	
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	bally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	5	7	9	(g) Channel Bottom Bank Stability was used globally instead of Channel Sectiment Stability and Composition because it more accurately represents the channel condition within the Lake Ralph Hall project watershed. (h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed.		
	HB12. Riparian Habitat Condition	2	5	7			
	Habitat Subtotal	43	53	61			
	Habitat FCI = Subtotal / 120	0.36	0.44	0.51			
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.13	1.31	1.49	(i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams		
	TOTAL FCU = SAR Length (528) X Multiplication Factor (0.00125) X Total FCI	0.75	0.86	0.98	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	ecuvery.	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB3-A5-(2)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to stability, sediment transport, and		
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB3-A5-(2)	H3a. Channel Sinuosity	4	4	4	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	3	3	3	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's n (f)	3	3	4	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	H3d. Channel Incision	8	8	8	species	- Protection, plantings, and measures	
	H4a. Pools	0	0	0	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4b. Channel Flow Status	0	0	0	other native material for in-channel	improve bank stability, filter runoff,	
Proposed SAR Length (LF):	Hydrologic Subtotal	41	42	44	structures	and enhance water quality	
	Hydrologic FCI = Subtotal / 100	0.41	42 0.42	0.44	 Adjustment of channel gradient by installing grade control structures 	 Woody debris, leaf litter, and overhanging herbaceous vegetation 	
2,407	WQ1a. Bank Stability (e)	6	0.42		(GCS) made from native material	from established buffer zones will	
		0	1	8	(rock or woody debris) where	enhance in-stream habitat and	
Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition <i>(e, g)</i>	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
Ephemeral	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (h)	0	0	0	where appropriate - Creation of riparian buffer zones		
	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width		
		5	5	1	on each side) - Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	9	9	9			
	WQ6a. Riparian Zone Width (from stream edge to field) <i>(e)</i>	5	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	41	49			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.51	0.61			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	2	2	2	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Piagaaabamiaal Eurotiona: "UP" -	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	quality / Biogeochemical Functions, HB -	
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9		bally instead of Channel Sediment/Substrate	
1	HB11. Riparian Zone <i>(e)</i>	5	7	9	(g) Channel Bottom Bank Stability was used globally instead of Channel Sediment/Substrate Composition because it more accurately represents the channel condition within the Lake		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed. (h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake		
	Habitat Subtotal	44	54	62			
1	Habitat FCI = Subtotal / 120	0.37	0.45	0.52			
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.18	1.38	1.57	Ralph Hall project watershed. (i) The Multiplication Factor is determined by the stream's flow regime; the multiplication factors for Perennial, Intermittent with Perennial Pools, Intermittent, and Ephemeral Streams		
	TOTAL FCU = SAR Length (2407) X Multiplication Factor (0.00125) X Total FCI	3.55	4.15	4.72	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	ectively.	

STREAM ASSESSMENT	SWAMPIM METRICS (a, b, c, d)	END OF	END OF	AT	MITIGATION ACTIVITIES / WORK	RATIONALE FOR LIFT	
REACH (SAR) INFORMATION		CONSTRUCTION	MONITORING	MATURITY	PERFORMED		
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	2	2	2	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB3-A5-(3)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area - Implementation of measures to	downcutting and improve stream stability, sediment transport, and	
	H2b. Channel Capacity to Flow Frequency	8	8	8			
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB3-A5-(3),	H3a. Channel Sinuosity	8	8	8	etc.) from outside conservation easement	increased overbank frequency) - LWD will increase channel	
S2-TRIB3-(9)	H3b. Bottom Substrate Composition	1	1	1	- Supplemental plantings of native	roughness and improve bank stability	
	H3c. Instream Bottom Topography OR Manning's n <i>(f)</i>	4	4	5	trees, shrubs, and herbaceous	 Created pools will retain water Protection, plantings, and measures 	
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	4	4	4	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	1	1	1	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	50	51	53	- Adjustment of channel gradient by installing grade control structures	- Woody debris, leaf litter, and	
1,333	Hydrologic FCI = Subtotal / 100	0.50	0.51	0.53		overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	6	7	8	(GCS) made from native material	from established buffer zones will	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	7	7	7	(rock or woody debris) where appropriate - Creation of pools in combination with	enhance in-stream habitat and biological productivity	
Stream Classification:	WQ2. Water Clarity	2	2	2	LWD and GCS and other locations		
Ephemeral	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (h)	2	2	2	where appropriate - Creation of riparian buffer zones around abannel (minimum of 60) width		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	5	7	around channel (minimum of 60' width on each side)		
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone (e)	9	9	9	- Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	36	45	53			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.45	0.56	0.66			
	HB1. Flow Regime	2	2	2			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	5	5	5	Notes:		
A-9	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D Mitigation Plan) for scoring methodology.	ocumentation (included in Appendix C of	
	HB4. Pool Variability	2	2	2	(b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Functions: "HB" =	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.		
	HB6. Channel Flow Status	1	1	1	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	4	4	4	(e) Score shown is the average of the left and r (f) Instream bottom topography was globally us	Ignt bank scores. ed in lieu of Manning's N as it allows for a	
	HB9. Bank Stability <i>(e)</i>	6	7	8	visual assessment of the stream reach.		
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo		
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately repres	ents the channel condition within the Lake	
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed. (h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake		
	Habitat Subtotal	48	58	66			
	Habitat FCI = Subtotal / 120	0.40	0.48	0.55	Ralph Hall project watershed.		
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.35	1.55	1.74	(i) The Multiplication Factor is determined by the factors for Perennial, Intermittent with Perennia are 0.0038, 0.00315, 0.0025, and 0.00125, resp	Pools, Intermittent, and Ephemeral Streams	
	TOTAL FCU = SAR Length (1333) X Multiplication Factor (0.00125) X Total FCI	2.25	2.58	2.90		···· · · / ·	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB3-A5-B1-(1)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream stability, sediment transport, and	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to		
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	8	8	8	prevent uncontrolled access (cattle,		
S2-TRIB3-A5-B1-(1)	H3a. Channel Sinuosity	3	3	3	etc.) from outside conservation easement	increased overbank frequency) - LWD will increase channel	
	H3b. Bottom Substrate Composition	1	1	1	- Supplemental plantings of native	roughness and improve bank stability	
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	trees, shrubs, and herbaceous	- Created pools will retain water - Protection, plantings, and measures	
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	0	0	0	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	0	0	0	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	39	39	40	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
98	Hydrologic FCI = Subtotal / 100	0.39	0.39	0.40	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	8	8	8	(GCS) made from native material	from established buffer zones will	
Mitigation Zone: Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition (e, g)	8	8	8	(rock or woody debris) where appropriate - Creation of pools in combination with	enhance in-stream habitat and biological productivity	
Stream Classification:	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
Ephemeral	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	0	0	0	where appropriate - Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	1	2	4	around channel (minimum of 60' width on each side)		
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	5	7	9	- Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	6	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	4	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	38	47			
Enhancement	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.48	0.59			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	1	2	3	Notes:		
A-12	HB3. Stream Bottom Substrate	2	2	2	(a) Refer to SWAMPIM Assessment Protocol D Mitigation Plan) for scoring methodology.	ocumentation (included in Appendix C of	
	HB4. Pool Variability	1	2	2	(b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Functions: "HB" =	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.		
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	7	7	7	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r (f) Instream bottom topography was globally us	ight bank scores. ed in lieu of Manning's N as it allows for a	
	HB9. Bank Stability <i>(e)</i>	8	8	8	visual assessment of the stream reach.		
	HB10. Vegetative Protection (e)	4	6	9	(g) Channel Bottom Bank Stability was used glo		
	HB11. Riparian Zone (e)	6	7	9	Composition because it more accurately repres	ents the channel condition within the Lake	
	HB12. Riparian Habitat Condition	5	6	7	Ralph Hall project watershed.		
	Habitat Subtotal	45	51	58	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake		
	Habitat FCI = Subtotal / 120	0.38	0.43	0.48	Ralph Hall project watershed.		
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.17	1.30	1.47	(i) The Multiplication Factor is determined by the factors for Perennial, Intermittent with Perennia are 0.0038, 0.00315, 0.0025, and 0.00125, resp	I Pools, Intermittent, and Ephemeral Streams	
	TOTAL FCU = SAR Length (98) X Multiplication Factor (0.00125) X Total FCI	0.14	0.16	0.18			

		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB3-A5-B1-(2)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream	
	H2b. Channel Capacity to Flow Frequency	8	8	8	- Implementation of measures to stability, sediment transport, and		
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB3-A5-B1-(2)	H3a. Channel Sinuosity	3	3	3	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's n (f)	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	H3d. Channel Incision	8	8	8	species	 Protection, plantings, and measures 	
	H4a. Pools	<u> </u>	0	0	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4b. Channel Flow Status	0	0	0	other native material for in-channel	improve bank stability, filter runoff,	
		-	-	÷	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	37	38	40	- Adjustment of channel gradient by	- Woody debris, leaf litter, and	
172	Hydrologic FCI = Subtotal / 100	0.37	0.38	0.40	installing grade control structures (GCS) made from native material	overhanging herbaceous vegetation from established buffer zones will	
	WQ1a. Bank Stability (e)	6	7	8	(rock or woody debris) where	enhance in-stream habitat and	
Zone A	WQ1b. Channel Bottom Bank Stability OR Channel Sediments or Substrate Composition <i>(e, g)</i>	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
	WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
Ephemeral	WQ3. Nutrient Enrichment OR Presence of Aquatic Vegetation (<i>h</i>)	0	0	0	where appropriate - Creation of riparian buffer zones		
	WQ4. Composition of Organic Matter	3	3	4	around channel (minimum of 60' width		
0.00125	WQ5. Land Use Pattern Beyond Immediate Riparian Zone <i>(e)</i>	9	9	9	on each side) - Creation of protected natural area adjacent to riparian buffer zone - Monitoring and management		
	WQ6a. Riparian Zone Width (from stream edge to field) (e)	5	7	9			
	WQ6b. Riparian Zone Vegetation Protection/Completeness (e)	2	6	9			
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	39	46			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.49	0.58			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-12	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	2	2	2	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water G	Quality (Diagonabamical Eurotiona: "HD" -	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.	Quality / Biogeochemical Functions, HB =	
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	3	3	3	(e) Score shown is the average of the left and r		
	HB9. Bank Stability <i>(e)</i>	6	7	8	(f) Instream bottom topography was globally us visual assessment of the stream reach.	ed in lieu of Manning's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo	obally instead of Channel Sediment/Substrate	
	HB11. Riparian Zone (e)	5	7	9	Composition because it more accurately repres		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed. (h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake Ralph Hall project watershed.		
	Habitat Subtotal	44	54	62			
	Habitat FCI = Subtotal / 120	0.37	0.45	0.52			
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.14	1.32	1.50	(i) The Multiplication Factor is determined by the factors for Perennial, Intermittent with Perennial	I Pools, Intermittent, and Ephemeral Streams	
	TOTAL FCU = SAR Length (172) X Multiplication Factor (0.00125) X Total FCI	0.25	0.28	0.32	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	pectively.	

STREAM ASSESSMENT		END OF	END OF	AT	MITIGATION ACTIVITIES / WORK		
REACH (SAR) INFORMATION	SWAMPIM METRICS (a, b, c, d)	CONSTRUCTION	MONITORING	MATURITY	PERFORMED	RATIONALE FOR LIFT	
Proposed SAR Name:	H1. Flow Regime and Groundwater Interaction	1	1	1	- Protection within large contiguous	- GCS will reduce channel	
S2-TRIB3-A5-B2-(1)	H2a. Channel Condition/ Alteration	8	8	8	mititgation area	downcutting and improve stream stability, sediment transport, and	
	H2b. Channel Capacity to Flow Frequency	8	8	8	 Implementation of measures to 		
Baseline SAR Name(s):	H2c. Channel Bank Stability <i>(e)</i>	6	7	8	prevent uncontrolled access (cattle,	floodplain connectivity (through	
S2-TRIB3-A5-B2-(1)	H3a. Channel Sinuosity	2	2	2	etc.) from outside conservation	increased overbank frequency)	
	H3b. Bottom Substrate Composition	1	1	1	easement	- LWD will increase channel	
	H3c. Instream Bottom Topography OR Manning's	2	2	3	 Supplemental plantings of native trees, shrubs, and herbaceous 	roughness and improve bank stability - Created pools will retain water	
	n <i>(f)</i>			-	species	- Protection, plantings, and measures	
	H3d. Channel Incision	8	8	8	- Use of large woody debris (LWD) or	to prevent uncontrolled access will	
	H4a. Pools	0	0	0	other native material for in-channel	improve bank stability, filter runoff,	
	H4b. Channel Flow Status	0	0	0	structures	and enhance water quality	
Proposed SAR Length (LF):	Hydrologic Subtotal	36	37	39	- Adjustment of channel gradient by	 Woody debris, leaf litter, and 	
69	Hydrologic FCI = Subtotal / 100	0.36	0.37	0.39	installing grade control structures	overhanging herbaceous vegetation	
	WQ1a. Bank Stability <i>(e)</i>	6	7	8	(GCS) made from native material	from established buffer zones will	
Mitigation Zone:	WQ1b. Channel Bottom Bank Stability OR				(rock or woody debris) where	enhance in-stream habitat and	
Zone A	Channel Sediments or Substrate Composition (e,	7	7	7	appropriate - Creation of pools in combination with	biological productivity	
Stream Classification:	<i>g)</i> WQ2. Water Clarity	0	0	0	LWD and GCS and other locations		
Ephemeral	WQ3. Nutrient Enrichment OR Presence of			-	where appropriate		
Ephonora	Aquatic Vegetation (h)	0	0	0	- Creation of riparian buffer zones		
Multiplication Factor (i):	WQ4. Composition of Organic Matter	3	3	4	around channel (minimum of 60' width on each side)		
0.00125	WQ5. Land Use Pattern Beyond Immediate	9	9	9	- Creation of protected natural area		
	Riparian Zone <i>(e)</i>	9	3	5	adjacent to riparian buffer zone		
	WQ6a. Riparian Zone Width (from stream edge	5	7	9	- Monitoring and management		
	to field) <i>(e)</i>	5	1	5			
	WQ6b. Riparian Zone Vegetation	2	6	9			
	Protection/Completeness (e)		-				
Mitigation Design Type:	Water Quality / Biogeochemical Subtotal	32	39	46			
Restoration	Water Quality / Biogeochemical FCI = Subtotal / 80	0.40	0.49	0.58			
	HB1. Flow Regime	1	1	1			
Reference Figure:	HB2. Epifaunal Substrate and Available Cover	4	4	4	Notes:		
A-9	HB3. Stream Bottom Substrate	4	4	4	(a) Refer to SWAMPIM Assessment Protocol D	ocumentation (included in Appendix C of	
	HB4. Pool Variability	2	2	2	Mitigation Plan) for scoring methodology. (b) "H" = Hydrologic Functions; "WQ" = Water (Quality / Biogeochemical Functions: "HB" =	
	HB5. Sediment Deposition and Scouring	7	7	7	Habitat Functions.		
	HB6. Channel Flow Status	0	0	0	(c) FCI = Functional Condition Index.		
	HB7. Channel Alteration	8	8	8	(d) FCU = Functional Capacity Unit.		
	HB8. Channel Sinuosity	2	2	2	(e) Score shown is the average of the left and r (f) Instream bottom topography was globally us	ight bank scores. ad in liou of Manning's N as it allows for a	
	HB9. Bank Stability <i>(e)</i>	6	7	8	visual assessment of the stream reach.	ed in neu of Marining's N as it allows for a	
	HB10. Vegetative Protection (e)	2	6	9	(g) Channel Bottom Bank Stability was used glo		
	HB11. Riparian Zone <i>(e)</i>	5	7	9	Composition because it more accurately represents the channel condition within the Lake		
	HB12. Riparian Habitat Condition	2	5	7	Ralph Hall project watershed.		
	Habitat Subtotal	43	53	61	(h) Nutrient Enrichment was used globally for scoring because Aquatic Vegetation does not provide an accurate representation of ephemeral stream channel condition within the Lake		
	Habitat FCI = Subtotal / 120	0.36	0.44	0.51	Ralph Hall project watershed.	a calculation within the Lake	
	TOTAL FCI = Hydrologic FCI + Water Quality / Biogeochemical FCI + Habitat FCI	1.12	1.30	1.48	(i) The Multiplication Factor is determined by the factors for Perennial, Intermittent with Perennia	I Pools, Intermittent, and Ephemeral Streams	
	TOTAL FCU = SAR Length (69) X	0.10	0.11	0.13	are 0.0038, 0.00315, 0.0025, and 0.00125, resp	Dectively.	
	Multiplication Factor (0.00125) X Total FCI		••••				